
Defeating Encrypted and Deniable File Systems:
TrueCrypt v5.1a and the Case of the Tattling OS and Applications
Alexei Czeskis∗ David J. St. Hilaire∗ Karl Koscher∗ Steven D. Gribble∗

Tadayoshi Kohno∗ Bruce Schneier†

Abstract
We examine the security requirements for creating a

Deniable File System (DFS), and the efficacy with which
the TrueCrypt disk-encryption software meets those re-
quirements. We find that the Windows Vista operating
system itself, Microsoft Word, and Google Desktop all
compromise the deniability of a TrueCrypt DFS. While
staged in the context of TrueCrypt, our research high-
lights several fundamental challenges to the creation and
use of any DFS: even when the file system may be deni-
able in the pure, mathematical sense, we find that the en-
vironment surrounding that file system can undermine its
deniability, as well as its contents. We hypothesize some
extensions of our discoveries to regular (non-deniable)
encrypted file systems. Finally, we suggest approaches
for overcoming these challenges on modern operating
systems like Windows. We analyzed TrueCrypt version
5.1a (latest available version during the writing of the pa-
per); Truecrypt v6 introduces new features, including the
ability to create deniable operating systems, which we
have not studied.

1 Introduction
A deniable file system (DFS) is one where the existence
of a portion of the file system can be hidden from view.
This is different from an encrypted file system, where
files and directories are visible yet unintelligible. In a
DFS, the very existence of certain files and directories
cannot be ascertained by the attacker.

Deniable File Systems are receiving increasing atten-
tion both in popular media and in academia due to the
current political environment in which personal laptops
are being searched, sometimes even seized, at interna-
tional border crossings. In response, the EFF (Electronic
Frontier Foundation) and CNET have published guides
on securely crossing the border with your laptop [3, 5].
Both guides recommend, as one of the most secure op-
tions, using a DFS to hide the existence of data. The sug-
gested tool is an open-source disk-encryption software
package called TrueCrypt, hence we use it as the focus
of our case study.

The TrueCrypt package for Microsoft Windows1 in-
cludes the ability to make a portion of the disk deniable.
While TrueCrypt allows for a large number of configu-

∗Dept. of Computer Science and Engineering, Univ. of Washington.
†BT.
1http://www.truecrypt.org/.

rations, a typical configuration might be as follows: Al-
ice creates a regular (non-deniable) encrypted file system
on her laptop, protected by some password she knows.
Inside that encrypted file system, she has the option to
also create a deniable file system, protected by a second
password. TrueCrypt refers to these inner, deniable file
systems as hidden volumes. These hidden volumes are
claimed to be deniable since, unless she reveals that sec-
ond password to an adversary, it should be impossible
for that adversary to determine whether Alice’s regular
encrypted file system contains an encrypted hidden vol-
ume or not.

We examine both the security requirements for cre-
ating a DFS, and how well TrueCrypt’s solution meets
those requirements. Our results show that deniability,
even under a very weak model, is fundamentally chal-
lenging. The natural processes of the Windows operating
system, as well as applications like Microsoft Word or
Google Desktop, can leak significant information outside
of the deniable volume. For example, lists of recently
changed documents, audit logs of recent file actions, and
data saved by application programs can all serve to in-
hibit deniability. As our results suggest, any DFS will
not only have to encrypt and hide data — as file systems
like TrueCrypt do — but must also erase any traces of
that data left by the operating system through normal op-
eration.

The rest of the paper is organized as follows. Sec-
tion 2 discusses relevant threat models for deniable file
systems. Section 3 describes the TrueCrypt approach in
more detail. Section 4 describes our principle informa-
tion leakage attack vectors against deniable file systems,
which we experimentally evaluate in the context of True-
Crypt hidden volumes. We propose potential defensive
directions in Section 5, as well as discuss the potential
applicability of our results to non-deniable (regular) en-
crypted file systems. We summarize some related works
in Section 6, and then close in Section 7.

Addendum and Document History. We analyzed the
most current version of TrueCrypt available at the writ-
ing of the paper, version 5.1a. We shared a draft of
our paper with the TrueCrypt development team in May
2008. TrueCrypt version 6.0 was released in July 2008.
We have not analyzed version 6.0, but observe that True-
Crypt v6.0 does take new steps to improve TrueCrypt’s
deniability properties (e.g., via the creation of deniable
operating systems, which we also recommend in Sec-

CONFIDENTIAL DRAFT – MAY 28, 2008 – CONFIDENTIAL DRAFT 1



tion 5). We suggest that the breadth of our results for
TrueCrypt v5.1a highlight the challenges to creating de-
niable file systems. Given these potential challenges, we
encourage the users not to blindly trust the deniability
of such systems. Rather, we encourage further research
evaluating the deniability of such systems, as well as re-
search on new yet light-weight methods for improving
deniability.

2 Threat Model
Alice is a human-rights worker, and keeps sensitive in-
formation on her computer. The data is encrypted, but
she is concerned that the secret police will seize her com-
puter and, noticing that part of the disk is encrypted,
threaten her — or worse — for the key. She needs to
protect her data in such a way that it is deniable: there
must be nothing that would indicate to the secret police
that there are hidden files on her computer. If she denies
the existence of certain files, and the police later discover
the existence of those files on her computer, she could be
vulnerable to severe punishment.

Encrypted file systems such as Microsoft’s BitLocker
will not suffice; encryption does not hide the existence
of data, it only makes the data unintelligible without the
key. This is precisely the sort of scenario that requires a
DFS.

However, it is exactly these restrictive security re-
quirements that make a DFS difficult to implement.
Breaking the security of a DFS does not require de-
crypting the data; it only requires proving that (or in
some cases simply providing strong evidence that) the
encrypted data exists.

There are several threat models against which a DFS
could potentially be secure:

• One-Time Access. The attacker has a single snap-
shot of the disk image. An example would be when
the secret police seize Alice’s computer.

• Intermittent Access. The attacker has several snap-
shots of the disk image, taken at different times. An
example would be border guards who make a copy
of Alice’s hard drive every time she enters or leaves
the country.

• Regular Access. The attacker has many snapshots of
the disk image, taken in short intervals. An exam-
ple would be if the secret police break into Alice’s
apartment every day when she is away, and make a
copy of the disk each time.

Clearly there is a point where the adversary is so pow-
erful that even a DFS won’t protect Alice. If Alice is
working on files in the deniable portion of her computer
when the secret police break down her door, she will not

be able to deny their existence. If the secret police are
able to obtain disk snapshots at close enough intervals,
the existence of any deniable files will be obvious, since
seemingly random bytes on the hard drive will change.
Still, we would like any DFS to provide as much security
as possible along the continuum of increasingly severe
threat models.

In this paper, we examine attacks against a DFS un-
der the most restrictive threat model: one-time access.
Clearly, a successful attack under this threat model im-
plies a successful attack under the less restrictive threat
models.

3 TrueCrypt
TrueCrypt is a free disk encryption application that pro-
vides on-the-fly-encryption for Microsoft Windows.2

TrueCrypt has the ability to create deniable hidden
volumes. These TrueCrypt hidden volumes are option-
ally – hence deniably – placed inside non-hidden, regular
encrypted volumes.

Outer (Non-Hidden, Regular) Encrypted Volumes. A
regular (non-hidden) TrueCrypt encrypted volume can be
stored (in encrypted form) as a file on top of a regular
file system. For example, a TrueCrypt encrypted vol-
ume could be stored as the file C:\TCContainer. Al-
ternately, a TrueCrypt encrypted volume could occupy
a dedicated partition on a disk. In either case, the en-
crypted volume is referred to as a TrueCrypt container.
To decrypt a TrueCrypt container, the user must provide
the password and keyfiles (if there were any) that were
used when creating the volume. We do not describe the
details of the TrueCrypt encryption and decryption algo-
rithms since we (largely) treat TrueCrypt as a black box.

Hidden Volumes. TrueCrypt provides a DFS through
a feature known as a hidden volume. A hidden volume
is a TrueCrypt volume stored inside the container of a
regular, non-hidden TrueCrypt volume. A hidden vol-
ume requires its own password, and — if the hidden
volume’s password is not supplied (or supplied incor-
rectly) — the hidden volume’s data will appear as ran-
dom data. Since free space in a regular (outer) TrueCrypt
volume is, according to the documentation, filled with
random data, this provides plausible deniability to an at-
tacker under the one-time access threat model. Namely,
such an attacker, even if given access to the password
for the outer encrypted volume, should not be able to de-
termine whether the random data at the end of the outer
encrypted volume is really just random data, or whether
it corresponds to an encrypted hidden volume. The True-

2The current version of TrueCrypt (version 5.1a) also provides
Linux and OS X implementations, but neither of these implementa-
tions support deniable file systems, and hence we do not consider these
implementations in this paper. Prior to a recent code rewrite, older ver-
sions of Linux TrueCrypt supported hidden volumes.

CONFIDENTIAL DRAFT – MAY 28, 2008 – CONFIDENTIAL DRAFT 2



Crypt documentation concludes that a person with a hid-
den volume could therefore convincingly deny the hid-
den volume’s existence.3

Interface to Windows. The TrueCrypt application ex-
poses several options to users wanting to mount a regular
or hidden volume, including: mount type (whether the
volume should be mounted as a fixed file system or a re-
movable file system), writability (read-only or not), and
mount point (e.g., E:).

TrueCrypt also exposes sufficient information to the
Windows operating system to allow Windows to mount
and interact with the contents of TrueCrypt volumes (af-
ter the relevant passwords or other credentials are en-
tered). We return to specifics of this exposed information
later.

Information Leakage from Below. The TrueCrypt doc-
umentation already includes some recommendations and
caveats for the use of hidden volumes.4 The princi-
pal recommendations are to be cautious about the media
on top of which a TrueCrypt hidden volume is stored.
Namely, suppose a TrueCrypt volume (and its associ-
ated outer volume) are stored on a USB stick. Then
wear leveling (a physical property of how data is some-
times stored on USB sticks) could reveal information
about the existence of the hidden volume. The True-
Crypt documentation similarly advises against storing a
TrueCrypt container on top of a journaling file system.
We stress that these existing recommendations focus on
being cautious about the media underlying a TrueCrypt
container. Our research focuses on information leakage
from above — i.e., information that might leak out about
a TrueCrypt hidden volume when the hidden volume is
mounted and the operating system and applications are
interacting with the hidden files.

The TrueCrypt documentation also rightly observes
that an adversary with greater than one-time access (i.e.,
intermittent or regular access) to the TrueCrypt container
could discover the existence of a TrueCrypt hidden vol-
ume; for example, by analyzing the differences between
multiple snapshots of a TrueCrypt container. Our analy-
ses therefore focus on the weaker case in which the ad-
versary is only given one-time access to the system.

4 Information Leakage from Above
We evaluate three general classes of information leakage
vectors against deniable file systems using TrueCrypt’s

3We have not verified that the free space at the end of a regular True-
Crypt volume is in fact filled with random data. Such an analysis would
be orthogonal to our principle focus of studying TrueCrypt’s black-box
interaction with the operating system and surrounding applications. A
failure to fill the free space with random data would, however, allow
for a simple attack against the deniability of the hidden volume.

4http://www.truecrypt.org/docs/?s=
hidden-volume-precautions.

hidden volumes as a case study. These classes all share
the following traits: the information is leaked out about
the hidden volumes and the files contained therein af-
ter the hidden volume is mounted, and the information
is not securely destroyed after the hidden volume is un-
mounted.

In more detail, the three classes of information leakage
that we consider are:

• Through the Operating System. Modern operating
systems are complex, with many unexpected and
unintuitive behaviors. Operating systems are not
designed with the goal of preserving the deniability
of deniable file systems. Therefore, the natural exe-
cution of an operating system may leak information
about the existence of a deniable file system, even if
the deniable file system is cryptographically secure.

• Through a Primary Application. A deniable file sys-
tem does not exist in isolation. Rather, people cre-
ate deniable file systems in order to hide content that
they are currently using and plan to use in the future.
In order to use those files, these people must run
an application (like Microsoft Word, Adobe Photo-
Shop, and so on). These applications, which are not
designed to preserve deniability, may leak informa-
tion about the existence of those files.

• Through a Non-Primary Application. Many com-
puters often run non-primary applications, or appli-
cations that (at first glance) appear to be unrelated
to the files stored on a hidden volume. For example,
many users run applications like Google Desktop
and anti-virus software that might interact poorly
with the deniability of a hidden volume.

We present experiments showing that the above infor-
mation leakage classes are not hypothetical. Our results
highlight the subtleties and challenges to building deni-
able file systems.

4.1 Example Leakage Through the OS: Shortcuts

The TrueCrypt documentation observes that information
about TrueCrypt is stored in the Windows Registry.5

This information reveals the fact that a person used True-
Crypt on his or her machine, and the locations at which
TrueCrypt volumes were mounted (e.g., E:). But this
information does not reveal the container’s file name, lo-
cation, size, nor the type of volume that was mounted.
Hence, the Windows registry does not appear to directly
compromise the deniability of a TrueCrypt hidden vol-
ume.

We do not consider the Windows registry further, but
instead turn to another artifact of the Windows operating

5http://www.truecrypt.org/docs/?s=windows-registry.

CONFIDENTIAL DRAFT – MAY 28, 2008 – CONFIDENTIAL DRAFT 3



system: shortcuts.6 A shortcut, or .lnk file, is a link to
another file. For example, the shortcut C:\shortcut.
lnk might link to the file D:\realfile.doc; double-
clicking on C:\shortcut.lnk would cause Microsoft
Word to open D:\realfile.doc. These links provides
a convenient way to access files and folders.

Shortcuts can be created in multiple ways, in-
cluding by users and by programs. Perhaps sur-
prisingly, Windows automatically creates shortcuts to
files as they are used, and in Vista these short-
cuts are stored in a folder called Recent Items that
is located in C:\User\UserName\AppData\Roaming\
Microsoft\Windows\. For example, if a user recently
opened the files E:\File1.doc and E:\File2.doc,
shortcuts to these two files would be in the Recent
Items directory. A wealth of information can be ob-
tained from a .lnk file, including the real file’s file name,
location, attributes, length, access time, creation time,
modification time, volume type, and volume serial num-
ber of the file system on which the real files are stored [4].

Suppose Alice stores the file BadStuff.doc on a hid-
den volume, edits that document while on a plane, and
then closes Word and unmounts the hidden volume be-
fore passing through customs. If the customs officer
inspects the Alice’s disk, he or she will quickly dis-
cover that Alice was editing this file — which alone
might be significantly compromising information for Al-
ice. Worse, even if the file had an innocuous name like
GoodStuff.doc, the customs officer can exploit the vol-
ume serial number field in the .lnk file in the Recent
Items directory to garner significant evidence that Alice
was using a hidden volume.

As additional setup for the latter, recall that in the U.S.
it is a crime to lie to a federal law enforcement officer [3].
This means that if Alice chooses to answer a custom
agent’s question about whether she has a TrueCrypt hid-
den volume, Alice must answer truthfully. Suppose first
that a customs agent asks if Alice uses TrueCrypt. The
only answer Alice can supply is “yes,” since evidence
of TrueCrypt’s usage is stored in the Windows registry
(and cannot be safely or reliably deleted, according to
the TrueCrypt documentation). Next, suppose that the
customs agent asks Alice to identify and mount all the
TrueCrypt volumes on her machine, as well as all her
other mountable file systems and USB sticks, and that
she does so except for the hidden volume.

The critical observation here is that each of these
mounted volumes has a unique volume serial number.
While this volume serial number is not available in the
registry, it is available to applications after the volumes
are mounted and is also stored in the shortcut .lnk files.
The customs agent can now compare the volume serial

6Our experiments were with Windows Vista Business edition with
Service Pack 1, though our results apply more broadly.

numbers in the relevant .lnk files to the volume serial
numbers for all the volumes that Alice mounted and, if
there is discrepancy, he knows that there exists or existed
a file system that Alice is not disclosing.

While the above scenario is described in real-time; that
is, happening while Alice is in the presence of the cus-
toms agent, the customs agent could collect similar evi-
dence by simply cloning Alice’s hard drive and, either at
that time or later, asking her to supply all her passwords.
We view the above scenario as plausible given the cur-
rent political environment [3, 5, 8], and even more likely
in other countries. Even if such a scenario were unlikely,
we view the potential for such a scenario — coupled with
the well-known fact that users have difficultly following
security protocols — to be sufficiently risky to advocate
not trusting in the deniability of TrueCrypt hidden vol-
umes.

4.2 Example Leakage Through the Primary Appli-
cation: Word Auto Saves

In order to dampen data loss in the case of a crash, many
applications use backup or recovery files. When edit-
ing a file, the application will create a local copy of the
file and record in it all changes made to the original file.
When the application successfully closes and saves all
modifications, the backup file is removed. It makes sense
that these applications store backup files locally in case
an external volume is prematurely unmounted (such as
removing a USB stick before it finishes syncing, or an
emergency power-off). For example, Microsoft Word
20077 by default creates auto-recover files in C:\Users\
UserName\AppData\Roaming\Microsoft\Word\.

The consequence of this auto-recover mechanism is
that a file that was originally stored in a hidden volume
has now been copied to the local hard disk. Although
Word removes the backup file after the user closes the
primary file, Word does not invoke secure delete. We
were repeatedly able to recover previously edited files
that were stored on the hidden volume by running a sim-
ple, free data recovery tool.

Specifically, we first ran cipher /w:c:\8 to clean
up any dirty free space. We then mounted a hid-
den TrueCrypt volume on which we had previously
stored seven copies of the Declaration of Indepen-
dence of the United States of America titled as variants
of OverthrowGovernment.doc. We then opened and
edited these files with Microsoft Word, saved the changes
to the original files, exited Word, and unmounted the hid-
den volume — all things an ordinary user might be rea-
sonably expected to do while using a TrueCrypt volume.

7Word 2007 (12.0.6311.5000) SP1 MSO (12.0.6213.1000) Part of
Microsoft Office Home and Student 2007.

8A Windows command that writes 0x00, 0xFF, and then random
data to all free space blocks on a disk.

CONFIDENTIAL DRAFT – MAY 28, 2008 – CONFIDENTIAL DRAFT 4



Without rebooting, we ran a simple, free data recov-
ery tool.9 The number of files we recovered and their
quality was not consistent on every experiment, since the
free space on the C: drive can be changed at any mo-
ment. Nevertheless, we were able to fully recover most
of the documents in their entirety from the Word auto-
recovery folder. After a fresh experiment that included
a reboot after the hidden volume was unmounted, half
of the files were still recoverable. We hypothesize that
we could have recovered even more data if we had per-
formed more sophisticated techniques such as examining
the individual file blocks on disk.

Furthermore, in cases when an application is prema-
turely terminated — for example, during a crash or by
a kill command — the auto-recover file will persist on
the local disk in clear view and will be recovered by
Microsoft Word without the TrueCrypt volume being
mounted. This means that just pulling the power on one’s
computer at the sight of authorities will not safeguard a
file if it was open or in the process of being edited.

While Microsoft Word presents users with the ability
to prevent auto-saves from occurring through the pref-
erences dialog, other applications may not. An attacker
can use information gleamed from these files — as well
as other information leakage from the primary applica-
tion — to not only infer that a hidden volume exists, but
also recover some of its contents.

4.3 Example Leakage Through A Non-Primary Ap-
plication: Google Desktop

Non-primary applications may also access the files
stored on a hidden volume. For example, desktop
search applications are becoming more prevalent, allow-
ing users to quickly navigate their computers. However,
in addition to merely indexing the files on a computer
to aid in searching for files, at least one desktop search
application — Google Desktop10 — includes an addi-
tional feature that presents problems for a DFS. This fea-
ture is the ability to view previous states of websites and
files such as Microsoft Word documents. According to
Google, the purpose of this caching feature is to recover
accidentally deleted files or to simply view an old ver-
sion of a file or web page. The default installation of
Google Desktop does not provide for the indexing or
caching of files; however, this basic mode of operation
limits Google Desktop’s ability to assist the user. When
installing Google Desktop, the user merely needs to se-
lect the “Enhanced Search” option to enable both the in-
dexing and caching of certain files types.

To protect privacy and to optimize searched areas, the
user is provided with the ability to choose which fold-

9http://tokiwa.qee.jp/EN/dr.html; DataRecovery 2.4.2.
10http://desktop.google.com/; we evaluated version

5.7.0805.16405-en-pb.

ers to include and exclude from indexing. However,
Google Desktop claims that all fixed drives will be in-
dexed by default. As a user opens documents, modifies
them, and saves them, Google Desktop caches snapshots
of the files and stores them for later viewing. Google
Desktop provides not only the latest cached version of a
file but also multiple versions of a file cached at different
times. These cached files could provide an attacker with
not only the current state of a document but also a view
of its evolution over time.

In our tests we created a Word document called
OverthrowGovernment.doc in a TrueCrypt hidden vol-
ume and added sections of the Declaration of Indepen-
dence to the document. With Google Desktop installed11

and running, we edited and saved the document numer-
ous times. After unmounting the TrueCrypt hidden vol-
ume, we were easily able to recover a number of snap-
shots of our file by merely searching for any word con-
tained in the file. We were able to repeat these results
irrespective of the volume’s mount point (any drive letter
F, G, H, L) or mount type (normal/fixed and removable
medium). See Figure 1.

Thus, to protect oneself, the user cannot rely on only
tweaking TrueCrypt’s settings, but rather must under-
stand the dangers presented by the non-primary appli-
cation itself. In the case of Google Desktop, one of
two choices could be made to prevent Google Desktop
from leaking file contents out of TrueCrypt volumes. The
user can either forgo the features of Google Desktop En-
hanced Search, forcing it into a limited mode of opera-
tion, or the user can make the conscious choice to either
shut down Google Desktop or pause its indexing when-
ever using a TrueCrypt volume. This burden of needing
to understand exactly how a non-primary application in-
teracts with a TrueCrypt volume underscores the difficul-
ties of implementing and using a DFS.

While non-primary applications such as Google Desk-
top may allow the user to pause its actions at arbitrary
points, other non-primary applications may not provide
the user with this capability even if the user understands
the dangers posed by the application. In addition, ma-
licious applications, like botnets or viruses, could obvi-
ously compromise the deniability of a hidden volume in
ways that the user cannot predict nor prevent.

5 Future Directions
5.1 Defensive Directions

It may be possible to address each of the above-
mentioned information leakage vectors in isolation. For
example, to counter the Windows shortcut-based attack,
TrueCrypt may consider using the same serial number
for all volumes, serial numbers that are a function of the

11Default install with Enhanced Search enabled.

CONFIDENTIAL DRAFT – MAY 28, 2008 – CONFIDENTIAL DRAFT 5



Figure 1: Information leakage through Google Desktop. The TrueCrypt hidden volume has been unmounted, and yet
we can recover numerous snapshots of the hidden file’s contents.

mount point, random serial numbers each time, or some
combination of the above. Other ad hoc approaches may
also be successful at addressing this particular informa-
tion leakage channel.

However, such ad hoc approaches do not solve the fun-
damental problem: the operating system and applications
can leak significant information about the existence of,
and the files stored within, a hidden volume. We have
identified three broad classes of information leakage vec-
tors, with concrete examples for each class. However,
we are sure that other examples likely exist, waiting to
be discovered. The problem is therefore much more fun-
damental, and addressing it will require rethinking and
reevaluating how to build a true DFS in the context of
modern operating systems and applications.

To create a DFS, it seems inevitable that the operat-
ing system (and perhaps the underlying hardware) must
assist in the deniability. New operating system architec-
tures like HiStar [10] could help ensure that information
about a DFS does not leak to other portions of a sys-
tem. However, the strong information flow guarantees
afforded by such architectures may be overkill to prevent
the most typical information leaks. Moreover, these ar-
chitectures require significant changes to the operating
system.

An approach that may work well with existing operat-
ing systems is to install a file system filter that disallows
a process any write access to a non-hidden volume (or
the registry, under Windows) once that process reads in-

formation from a hidden volume.12 Robust applications
should accept the fact that they cannot store temporary
files and either alert the user that a feature is not available
(like auto-recovery) or silently fail (like saving a shortcut
to a recent document). Less robust applications may not
work under this new restriction. However, the fact that
applications no longer work tells the user that applica-
tion will leak potentially private information. The user
can then weigh the risks and benefits of using the appli-
cation in an unprotected manner, and manually allow the
application to work outside the protection scheme.

While this does not provide 100% protection, it may
work well enough to stop typical information leaks. For
example, a process may leak information about a hidden
volume to another process via IPC or a network connec-
tion, and that second process may write this information
to a non-hidden volume. However, we hypothesize that
these situations are rare in practice, and that this mini-
malist information flow approach will substantially im-
prove the deniability of hidden volumes; users must still
avoid being lulled into a false sense of additional security
greater than what is actually afforded.

Another possible direction would be to create a “True-
Crypt Boot Loader” that, upon entering one password,
decrypted the disk one way and booted the OS. And,
upon entering a different password, decrypted the deni-

12It may also be desirable to mark certain applications, such as
Google Desktop, as never being allowed to read a hidden volume, lest
they be permanently tainted with knowledge of the forbidden data.

CONFIDENTIAL DRAFT – MAY 28, 2008 – CONFIDENTIAL DRAFT 6



able portion of the disk and booted the OS in the deniable
partition. (Addendum: such a boot loader is now imple-
mented in TrueCrypt v6.0.)

We leave other specific directions as open problems.

5.2 Reflections to Regular Disk Encryption

Reflecting on the second and third classes of information
leakage (Sections 4.2 and 4.3), we stress that they also
seem applicable to regular (non-deniable) disk encryp-
tion systems in which only a subset of all the user’s en-
tire disks are encrypted and in which a user does not deny
the existence of the encrypted regions but does refuse to
divulge the passwords.

In our future work, we would like to investigate ex-
actly how well these attack vectors apply to regular en-
crypted disks and volumes. We also wish to explore
methods for limiting information leakage in situations
when whole disk encryption is not used (for example:
when using an encrypted USB drive or virtual disk with
a non-encrypted system disk). In summary with regard
to disk encryption, in situations where there is a need to
protect the privacy of individual files, the safest strategy
appears to be to encrypt the full disk with tools like PGP
Whole Disk Encryption.

6 Related Works
We mention significant related work in-line above, but
recall here the long history of steganographic and de-
niable file systems beginning with the work of Ander-
son et al. [1], and followed by both academic publica-
tions [6, 7] as well as non-academic but widely circu-
lated applications (include TrueCrypt); see also [9]. A
related thread of research, though not targeting deniabil-
ity, is focused on encrypted file systems, again includ-
ing both published research such Blaze’s encrypted file
system for Unix [2], commercial systems such as PGP
Whole Disk Encryption and BitLocker, and open source
systems, including TrueCrypt. There are large bodies of
research focused on information leakage in other con-
texts.

7 Conclusion
We demonstrate three broad classes of information leak-
age vectors against the deniability of a TrueCrypt hid-
den volume: leakage from the operating system; leak-
age from the primary application; and leakage from non-
primary applications. We believe that our work under-
scores a new direction for the design and analysis of de-
niable file systems — a direction that must include pro-
visions for protecting against information leakage from
the external environment that interacts with the deniable
file system while the file system is mounted.

Addressing these issues is both timely and impor-
tant, as evidenced by the current political environment

in which computers are searched at international borders
and the broad media discussions about the advantages of
deniable file systems like TrueCrypt’s, e.g., [3, 5, 8].

On the other hand, even if a DFS is secure, it might
not be a good solution to Alice’s secret-police problem.
Just as an attacker would not be able to prove the exis-
tence of secret data under such a secure DFS, the same
attacker wouldn’t be able to prove the non-existence of
deniable data. If the secret police continue to demand
that Alice disclose the password to such a deniable file
system, there is no way for her to prove that her configu-
ration doesn’t have such a volume. Deniability cuts both
ways, and sometimes that’s not a benefit.

References
[1] R. Anderson, R. Needham, and A. Shamir. The steganographic

file system. In Information Hiding, 1998.

[2] M. Blaze. A cryptographic file system for UNIX. In CCS, 1993.

[3] J. Granick. EFF answers your questions about border
searches. http://www.eff.org/deeplinks/2008/05/
border-search-answers, 2008.

[4] J. Hager. The Windows shortcut file format.
http://www.i2s-lab.com/Papers/The_Windows_
Shortcut_File_Format.pdf, 2003.

[5] D. McCullagh. Security guide to customs-proofing
your laptop. http://www.news.com/8301-13578_
3-9892897-38.html, 2008.

[6] A. D. McDonald and M. G. Kuhn. StegFS: A stegano-
graphic file system for Linux. In Information Hiding,
1999.

[7] B. Oler and I. E. Fray. Deniable file system: Application
of deniable storage to protection of private keys. In In-
ternational Conference on Computer Information Systems
and Industrial Management Applications (CISIM), 2007.

[8] B. Schneier. “Taking your laptop into the US? Be sure to
hide all your data first”. The Guardian, 15 May 2008.

[9] B. Schneier. Deniable file system. http:
//www.schneier.com/blog/archives/2006/04/
deniable_file_s.html, 2006.

[10] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in HiStar.
In OSDI, 2006.

CONFIDENTIAL DRAFT – MAY 28, 2008 – CONFIDENTIAL DRAFT 7


