
Origin Cookies: Session Integrity for
Web Applications

Andrew Bortz
Stanford University

abortz@cs.stanford.edu

Adam Barth
Google, Inc.

abarth@google.com

Alexei Czeskis
University of Washington

aczeskis@cs.washington.edu

Abstract

Virtually every web site on the Internet uses cookies to maintain session
state between HTTP requests. Unfortunately, cookies have a serious design
flaw which limits their security. In particular, cookies can not provide session
integrity against an attacker who can host content on a related domain.
This type of attacker is surprisingly common and problematic, yet existing
proposals and best practices do not address this vulnerability. A lack of session
integrity can result in session hijacking and session substitution that seriously
compromise the security of web sites. In this paper, we demonstrate the
possibility of achieving session integrity in existing browsers, but this requires
the use of techniques that many existing web sites would have difficulty
implementing. Therefore, we propose a lightweight extension to cookies that
is secure against related-domain and network attackers, and illustrate how it
facilitates session integrity.

1. Introduction

Despite the fact that modern web applications have become
more sophisticated, with rich user experiences that can rival
that of desktop applications, they continue to be built on top of
basic web primitives designed for less demanding applications.
In particular, messages between the user’s browser and the
server are transmitted using HTTP, an inherently stateless pro-
tocol. Because nearly every application requires state specific
to each user, these messages must be explicitly linked together
by the server into ‘sessions,’ so that this state can be accessed
and modified during the course of a user’s interaction with the
application.

There are a number of techniques for maintaining this
session state on the web, but by far the most commonly used
are ‘cookies.’ Cookies consist of data stored in the browser that
are sent with every request to the server, and can be modified
with each response. Largely because cookies are very easy
to use, they have been the natural technique for session state
since they were introduced in 1994. Some applications store
this state directly in the cookies themselves, some applications
store an identifier in the cookies that allows the session state
to be retrieved by the server, and some do both.

The most common, and most important piece of information
stored in session state is the authenticated identity of the user.
For this reason, session state represents a very valuable target
for attackers. A large fraction of attacks on web applications
involve stealing, replacing, or co-opting a user’s session.
Cookies have evolved in several ways in response to various
attacks.

However, there remains a significant design flaw in cookies,
and consequently, secure session state: cookies stored by one
site can be modified by another if the two sites happen to
share a sufficiently long suffix [1], [2]. For example, two
such sites are docs.google.com and www.google.com, having
google.com as a suffix. While not all suffixes are considered
long enough (e.g. com, co.uk), nearly every domain that can be
purchased by individuals or corporations will be. We call two
domains that share a sufficiently long suffix related domains,
and attackers who control a related domain to their target can
manipulate their target’s cookies.

Even though an attacker who controls a related domain
cannot steal the user’s cookies for the target domain, an
attacker that can modify the target domain’s cookies can
still seriously compromise the security of the application. For
example, an attacker who substitutes his own cookies for
those of a user can often trick a user into entering secret
information, such as passwords and credit card numbers, into
the honest site, which then stores that information in the
attacker’s account. The target site cannot prevent this attack
by encrypting and signing its cookies, because the attacker
can obtain correctly encrypted and signed cookies simply by
accessing the site in his or her own web browser.

Related-domain attackers are significantly more common
than they might appear at first glance. Because this threat is not
well-known, domains are routinely assigned for convenience
without regard to issues of security or trust. Cloud hosting
services and dynamic DNS services host sites or issue domains
that can compromise the site of every customer of those ser-
vices, and sometimes even the hosting service itself. Internet
service providers issue domains for free to every subscriber
that can be used to compromise their own secure customer
portals. Internal corporate networks frequently issue domains
that can attack their publicly-accessible website, regardless of
the presence of firewalls.

Even when all related domains are mutually trusted, a single
vulnerability in one web application can result in a catastrophic
loss of security to every other related application. For exam-
ple, the common strategy of isolating account management
onto accounts.example.com is insufficient to protect it from
a vulnerability in www.example.com. This lack of isolation
between related domains effectively expands the attack surface
of a web application to the set of all applications with related
domains, reducing the security of each web application to that



of the least secure.
Finally, even use of encrypted communication (HTTPS)

does not solve the problem. HTTPS can prevent a network
attacker from stealing a user’s cookies in much the same
way as related domains are already prevented, but nevertheless
related-domain attackers and network attackers can continue
to modify cookies over both secure or insecure channels.

While nearly none do, web sites could secure their session
state today from related-domain and network attackers in
existing browsers. We demonstrate two techniques: one that
secures cookies by preventing certain related-domain and
network attacks, and one that replaces cookies with a secure
alternative.

1) Using a browser technology that enforces the exclusive
use of encrypted communication across domains, we
can prevent network attackers from creating sites at
related domains. This can be achieved by controlling
the issuance of certificates, and is effective so long as
every site hosted on a related domain is trusted, and free
of vulnerabilities, and remains functional even when all
requests are exclusively over HTTPS.

2) Replacing cookies as the primary session management
technology with a secure alternative mitigates the threat
of related-domain and network attacks, but requires that
most web application developers re-architect their appli-
cations, likely at great cost. In addition, this technique
requires web platform features that are not present in
some older browsers.

Unfortunately, each of these solutions has significant dis-
advantages that would make deployment infeasible for most
existing sites. Therefore, we instead propose extending the
cookie protocol by adding origin cookies. Origin cookies
are a backwards-compatible extension that lets existing web
applications secure session state in the presence of related-
domain and network attackers with minimal implementation
complexity. Specifically, origin cookies are isolated within a
particular ‘origin,’ which includes the fully qualified domain
of the application. This prevents an application from access-
ing or modifying a related domain’s cookies. We will also
demonstrate how origin cookies can be deployed easily and
effectively, even with complex collections of interacting web
applications.

2. Related Work

Cookies and the way in which they are used for session
management has evolved over their long history. On their own,
cookies are not sufficient to prevent a large class of attacks
called cross-site request forgery (CSRF) [3]. Typically, this is
mitigated by adding a secret token to all authenticated requests.
The Secure attribute can be used in an attempt to thwart
network attackers, and does effectively stop some passive
network attackers [4]. But because this attribute provides only
confidentiality, and not integrity, it is not sufficient to prevent
active network attackers. Cookies can be shared between

domains – in fact, this is source of the attacks of this paper
– but early attacks resulted in restrictions on how broadly
cookies can be shared between domains [5].

A class of attacks called ‘session fixation’ result from poor
design and implementation bugs in some web sites and web
site frameworks, allowing an attacker to compromise session
integrity by bypassing cookies rather than compromising them
directly [6].

As a result of the limited degree to which cookies can be
shared, other protocols have had to be deployed to handle
the secure exchange of data from one origin to another.
OpenID [7], OAuth [8], and WebAuth [9] are good examples
of these. Other proposals have been made that have some bear-
ing on the specific attacks of this paper, such as webkeys [10]
and state-info [11].

In order to facilitate good performance, many web sites use
some combination of secure and insecure communication, in
an attempt to combine the best attributes of both methods.
Unfortunately, these ‘hybrid’ sites are surprisingly vulnerable
to easy attacks. A common response to many vulnerabilities
is to use only secure communication [12], [13], [14]. This
response hurts performance and nevertheless the sites remain
vulnerable to the attacks of this paper.

HTTP Strict Transport Security (HSTS) [15] is a method
of forcing the use of secure communication, which prevents
certain types of attacks. We show how an optional feature of
HSTS can be used to some effect in preventing the attacks of
this paper.

3. Threat Model

In this section, we describe the three important types of
attackers with respect to our attacks on session integrity:
the web attacker, the related-domain attacker, and the active
network attacker. The web attacker and active network attacker
threat models are standard from the web security literature. We
introduce the related-domain attacker to study a peculiarity of
cookies by which related domains can interact in ways that
arbitrary domains cannot.

3.1. The Web Attacker

The web attacker is well-known in the web security litera-
ture [2]. The web attacker operates a malicious web site, which
we refer to canonically as attacker.com. The web attacker
is able to receive and send HTTP messages to and from
attacker.com but has no privileged access to the network. We
assume the attacker has an HTTPS certificate for attacker.com,
because anyone can purchase an HTTPS certificate for a
domain they own for a nominal amount of money, or even
get a free one for a limited amount of time.

We also assume the user continually visits attacker.com in a
web browser. We make this assumption because web browsers
are designed to protect the user even when the user visits a
malicious web site. To counter-balance this free ‘introduction,’
we do not allow the attacker to confuse the user about what



web site the user is visiting or to exploit vulnerabilities in the
user’s browser. Instead, we assume the user is keenly aware of
the browser’s security indicators and is using a browser that
correctly implements web standards.

3.2. The Related-Domain Attacker

The related-domain attacker is a web attacker whose web
site is hosted on a related domain of the target web site. Recall
that related domains are domains that share a sufficiently long
suffix, such as google.com or bbc.co.uk. Any suffix that is not
present in a public database of suffixes [5] will be considered
long enough by current browsers. This includes nearly every
domain that can be purchased by normal individuals and
corporations. Most of the browser’s security features isolate
sites from related-domain attackers because the browser’s
same-origin policy is based on the full host name. However,
because cookies do not respect the same-origin policy in
several ways, this additional power over a web attacker is very
significant.

The notion of a related-domain attacker may be new, but
the prevalence of these attackers is already high and rising.
This is not surprising, since the extent to which issuing a
subdomain can compromise other hosts on that domain is
not well-known. Frequently, Internet service providers issue
domains to each subscriber under the same domain as all their
other assets. Internal corporate networks similarly issue many
internal domains.

Specifically, since the advent of “cloud computing”, ser-
vices such as Heroku increasingly host mutually distrusting
web applications on sibling domains (e.g. app1.heroku.com
and app2.heroku.com). There are several reasons why sibling
domains are appealing to these hosting providers, but one im-
portant consideration is that the hosting provider can purchase
a single HTTPS certificate for *.heroku.com and offer HTTPS
hosting at minimal cost for each web application. Google
AppEngine is another such example of a cloud hosting service.

Note that the related-domain attacker does have an HTTPS
certificate for the related domain. In the case of Heroku,
AppEngine, and others like them, access to a certificate is
provided. For many dynamic DNS services (including dyn-
dns.com), it will be easy for the attacker to get a certificate,
since these services typically provide email or facilitate email
(via MX delegations) that will allow an attacker to apply for
and receive a domain-validated certificate. In the case of ISPs
and corporate intranets, it may not be possible, if no certificate
is provided and no email is allowed. This will be important
for certain techniques for securing session state.

3.3. The Active Network Attacker

The active network attacker is also well-known in the
security literature. Our notion of an active network attacker
is similar to the classical active network attacker, but slightly
stronger. In addition to the ability to intercept and spoof any
network message, our active network attacker also has all

the abilities of a web attacker. We assume an active network
attacker will be unable to manipulate HTTPS traffic for a
domain he does not control, because that traffic is protected
by TLS, which we assume to be secure.

With the exception of possessing an HTTPS certificate, it
can be seen that our active network attacker is at least as pow-
erful as a related-domain attacker, since he can masquerade as
any HTTP web site, even nonexistent ones. This ability is
not significantly curtailed by DNSSEC; although an attacker
might not be able to construct new domains, he can still control
communication to sites corresponding to existing records.

4. Current Session Management

In this section, we describe what session integrity is, and an-
alyze whether current HTTP session management mechanisms
achieve it. We find that existing techniques can achieve session
integrity against web attackers but fail to achieve session
integrity against related-domain attackers or active network
attackers, even if the web sites use HTTPS exclusively.

There are two required properties for secure sessions on
web sites: confidentiality and integrity.

4.1. Confidentiality

Because sessions are simply data transmitted from a web
browser to a web site on each request, if an attacker can
compromise confidentiality and read that data, he can hijack
that session. Cookies are the primary mechanism by which
session state is stored and transmitted for nearly all web sites,
so cookies must have confidentiality for sessions to be secure.

Despite the fact that cookies were designed before the same-
origin policy became the dominant security model for the web,
if carefully used, cookies can achieve relatively high standards
of confidentiality. Cookies allow web sites to store key/value
pairs at the user agent using the HTTP Set-Cookie header,
which the user agent then returns on subsequent requests.
While setting a cookie, a server can optionally specify a
scope for that cookie, which consists of a domain and path.
The cookie is then attached to HTTP requests for all URLs
with a host equal to, or a subdomain of, the cookie’s domain
and whose path extends the cookie’s path. However, in many
browsers1 if the server does not specify a domain, then the
cookie will only be attached to requests where the host is an
exact match. This almost2 matches the behavior required by
the same-origin policy. Therefore, such a cookie will not be
sent to an attacker, and has confidentiality.

To provide confidentiality against active network attackers,
servers that use secure communications can set cookies with
the Secure attribute. When the Secure attribute is set, the
browser will only include that cookie on requests to ‘secure’
URLs (e.g., URLs with the https scheme). Because even an

1. All browsers except Internet Explorer
2. Requests to schemes and ports other than http(s) and 80/443 can also

contain the cookie, but in practice this is not a major problem.



active network attacker cannot eavesdrop on these requests,
the cookie will remain confidential.

4.2. Integrity

Even if an attacker cannot steal another user’s session, if he
can replace that session with one that he controls, he can attain
the same power. At the very least, the user can be logged in
as the attacker (so-called login CSRF), but for most sites, the
attacker can retain control over the session, and thus execute
exactly the same set of attacks as if the session originated with
the user [2].

Unfortunately, cookies do not have strong integrity proper-
ties, because cookies can be set for domains other than that
of the original host. Specifically, a server can set a cookie for
any suffix of its domain, excluding suffixes that are considered
‘too short’ [5]. For example, attacker.heroku.com can set a
cookie for heroku.com. That cookie will then be included in
all HTTP requests for subdomains of heroku.com, including
app1.heroku.com, www.heroku.com, payments.heroku.com,
and even more significantly, that cookie will be indistinguish-
able from a cookie of the same name set by the real site.
This lack of isolation between subdomains will let the related-
domain attacker mount attacks by compromising the integrity
of the target site’s cookies.

Similarly, http://example.com can set a cookie without
the Secure attribute, which is then included in requests for
https://example.com. Worse, http://example.com can overwrite
already existing Secure cookies set by https://example.com,
and the server cannot distinguish the overwritten cookie from
the original cookie.

Choosing hard-to-guess keys is a proposed mitigation [1]
that, unfortunately, does not prevent any of the above attacks.
Even though an attacker may not be able to overwrite such
a cookie, this can be simulated by exhausting the browser’s
cookie store, evicting all cookies (since old cookies are evicted
once the store is exhausted), and then writing new cookies.

The lack of isolation between the http and https schemes is
particularly problematic in the active network attacker threat
model because the attacker can spoof responses to requests
for http://example.com. Even if normal use of example.com
never generates a request for http://example.com, the at-
tacker can always cause the browser to generate a request
for http://example.com by embedding an image element in
http://attacker.com. (Recall that we assume the user visits
http://attacker.com in all of our threat models.)

Note that the best practices of encrypting and signing (using
a MAC) the contents of the cookies do not help defend against
these particular integrity attacks. Since the attacker can always
acquire a session of his own, he can always obtain cookies that
decrypt and validate correctly. These cookies will continue
to decrypt and validate correctly when transplanted into the
user’s browser. Encryption and signatures serve to protect the
confidentiality and integrity, respectively, of the contents of
the cookie, but not which cookie is actually sent.

4.3. Attacks on Integrity

The consequences of compromising the confidentiality or
integrity of a user’s session are very serious. An attacker can
typically take complete control over that session, resulting in
nearly complete loss of security for the user. An attacker can
bypass authentication at sites to read sensitive information,
take actions on behalf of the user, and potentially impersonate
the site to the user, allowing an attacker to gain access to
passwords and other credentials.

As an example, an attacker can create a free site at
heroku.com, get free SSL access to his site, and use that site
to attack other customers of Heroku by overwriting cookies
of those other sites with those known and controlled by the
attacker. Even worse, this attacker can attack Heroku itself,
since Heroku’s own site is exclusively hosted at domains under
heroku.com (api.heroku.com, payments.heroku.com, etc.).

On the other hand, Google App Engine, a similar service,
can not be used to attack Google itself, as they are not hosted
at related domains. While this can be done in some cases, it
is not a solution for all, and does nothing to prevent active
network attackers. In fact, App Engine is unique among host-
ing services, as it has successfully petitioned to be included
in the Public Suffix List [5]. This means that different App
Engine customers are not considered to be related domains by
most web browsers. Unfortunately, this also does nothing to
prevent active network attackers, nor can it be considered a
sustainable solution for all web sites.

5. Session Integrity in Current Browsers

In this section, we show that web applications can, with
some effort, achieve session integrity in current browsers. We
demonstrate two approaches, but note that each has a number
of significant disadvantages that makes it inappropriate for
most existing web applications. These approaches make use
of browser technologies that were not designed specifically
to solve session integrity, yet when used appropriately can be
effective.

5.1. Integrity through Strict Transport Security

One approach to session integrity is to actually secure
cookies against modification by attackers. This will clearly
require a new approach, given the attacks of the previous
sections. HTTP Strict Transport Security (HSTS) [15] provides
tools that we can use to make certain web applications secure.

Background. HSTS is an extension to HTTP that allows
a server to request that future network requests to particular
domains only be executed over secure channels. For exam-
ple, a web application can send a response to a request to
https://example.com as in Figure 1.

In this example, subsequent requests to example.com for the
next 500 seconds will only be transmitted via secure channels.
Even if another page attempts to load http://example.com,
this will be transformed into https://example.com. In addition,



HTTP/1.1 200 OK
...
Strict-Transport-Security: max-age=500; includeSubDomains
...

Fig. 1. An HTTP response asserting the use of HTTP Strict Transport Security across all sub-domains.

included is an optional parameter (includeSubDomains) that
additionally enforces this restriction on all subdomains. Re-
quests to any domain ending in .example.com will be similarly
transformed to use secure channels.

Design. For a web application or collection of mutually
trusting applications at subdomains of example.com, exclu-
sively served over HTTPS, we can enable HSTS for the entire
domain of example.com. This can be effected by loading
an image or other sub-resource from https://example.com,
and responding with a Strict-Transport-Security directive, with
includeSubDomains present.

Security. Because all the applications under example.com
are mutually trusting, we do not have to worry about a related-
domain attacker. In regards to the active network attacker,
recall that his method of attack requires the ability to load
resources at example.com over an insecure channel. When
HSTS is enabled, this behavior is completely blocked at the
browser, preventing the active network attacker from having
any additional powers over that of the web attacker. However,
note that includeSubDomains is critical to the security of
this technique. Without it, an active network attacker can
simply choose an unprotected subdomain of example.com,
such as attacker.example.com, and overwrite cookies in a
manner similar to that of a related-domain attacker.

Disadvantages. Obviously, the constraints of this solution
restrict its implementation to only certain applications: ones
that are served from a domain under the complete control of
the application, and for which no shorter domains are consid-
ered related. Therefore this solution cannot be implemented
in situations where the related-domain attacker is most likely,
such as Heroku or Google App Engine.

Also, there is a critical window of vulnerability in this
solution. Before HSTS can be enabled, or between re-enabling
after the directive expires, an active network attacker has the
ability to overwrite cookies as usual. While the directive can
be made to expire arbitrarily far in the future, there is no way
to eliminate the window before the browser first navigates to
the web application.3 Additionally, an active network attacker
may be able to prevent requests to the root domain (e.g.
example.com).4 If blocking these requests does not materially
affect the functionality of the site (such as if the site is
really hosted at www.example.com), then session integrity
attacks can continue to be executed through subdomains of
example.com.

3. This could be mitigated if servers could distinguish requests from clients
with and without HSTS enabled, but this is not currently in the HSTS
specification.

4. Modern browsers use SSL SNI (Server Name Indication), which reveals
to the attacker which domain is being accessed.

Finally, this solution depends critically upon the use of
HSTS, which, at the time of this writing, is only implemented
in Google Chrome and Firefox 4.

5.2. Integrity through Custom Headers

Instead of securing cookies, we can achieve session integrity
by choosing a new method of storing and transmitting session
state. While this could be done using special browser plugins
like Flash, we would rather choose a design with the fewest
dependencies, so we will focus only on basic HTTP tools.

The basic form of an HTTP request has very few places that
are suitable for sending data with integrity. Data in the URL
or entity body of HTTP requests has no integrity, because
those parts of the HTTP request are writable across origins
and thus spoofable by an attacker. Cookies are also weak in
this regard, as they can be overwritten by the attacker in our
threat model. However, through the use of a JavaScript API
called XMLHttpRequest (XHR), we can send data in a custom
header.

Background. XMLHttpRequest (XHR) allows HTTP
requests containing custom headers to be made, and the
responses read, but only to the origin of the executing
JavaScript.5 As a result, requests made via XHR can be
distinguished by a server as necessarily originating from the
site itself.

Design. We will not use cookies at all, and instead pass
a session identifying token in a custom HTTP header which is
only written via XMLHttpRequest. The server should treat all
requests lacking this custom header, or containing an invalid
token, as belonging to a new, anonymous session. In order to
persist this session identifying token across browser restarts
and between different pages of the same application, the token
can be stored in HTML5 localStorage by JavaScript upon
successful authentication.

Security. Observe that in this model, the session iden-
tifying token will only be sent to the origin server, and will
not be included in the URL or entity body. These properties
provide confidentiality and integrity, respectively. Unlike with
cookies, the token cannot be overwritten by the attacker, since
localStorage completely partitions data between origins in
most browsers6. A site using HTTPS can ensure that the token
is only sent over HTTPS, thus ensuring the secrecy of the
token even in the presence of an active network attacker. In

5. Sites may make cross-site requests using XHR if supported by the
browser and authorized by the target server

6. True in Chrome, Firefox, Safari, and Opera on OS X, several Linux
distributions, and Windows 7. Internet Explorer 8 does not partition HTTP
and HTTPS, but Internet Explorer 9 does.



addition, because this token is not sent automatically by the
browser, it also serves to protect against CSRF attacks.

Disadvantages. This approach, however, has several dis-
advantages. First, it requires all requests requiring access to
a user’s session to be made using XMLHttpRequest. Merely
adding a session identifying token explicitly to all requests,
much less doing them over XHR, would require major changes
to most existing websites, and would be cumbersome and
difficult to implement correctly without a framework. This
is even further complicated if requests for sub-resources like
images require access to session state, since it is not trivial
to load images via XHR. Third, since this design depends on
the presence and security of HTML5 localStorage, it will be
impossible to implement on some legacy browsers.

6. Session Integrity in Future Browsers

Neither of the previous solutions, nor others considered
using existing browser technologies, provide sufficient security
while remaining deployable for existing sites. Therefore, we
propose an extension to cookies called origin cookies. Origin
cookies allow existing web applications to secure themselves
against the described attacks, with very little complexity of
implementation on the part of either the web application
or the browser, with transparent backwards compatibility for
browsers that do not yet implement origin cookies, including
legacy browsers that may never support them, and imposing
no burden on existing web sites that have not enabled origin
cookies.

This is not a trivial problem to solve, as evidenced by
existing proposals that fail to meet one or more of the above
desired properties. For example, sending the origin of every
cookie on each request is one common idea [16]. This is much
more complicated than necessary, and imposes a much larger
burden on web sites, including ones that don’t even know how
to effectively use this information.7

6.1. Origin Cookies

The real problem with using cookies for session manage-
ment is lack of integrity, specifically due to the ability of
other origins to clear and overwrite cookies. While we cannot
disable this functionality from cookies without breaking many
existing sites, we can introduce new cookie-like functionality
that does not allow such cross-site modification.

Design. Origin cookies are cookies that are only sent and
only modifiable by requests to and responses from an exact
origin. They are set in HTTP responses in the same way as
existing cookies (using the Set-Cookie header), but with a new
attribute named ‘Origin’. In order to enable web applications to
distinguish origin cookies from normal cookies, origin cookies
will be sent in an HTTP request in a new header ‘Origin-
Cookie’, while normal cookies will continue to be sent in the
existing header ‘Cookie’.

7. The proposal in [16] also has a subtle integrity vulnerability.

HTTP/1.1 200 OK
...
Set-Cookie: foo=bar; Origin
...

Fig. 2. An HTTP response setting an origin cookie.

GET / HTTP/1.1
Host: www.example.com
...
Origin-Cookie: foo=bar
...

Fig. 3. An HTTP request to a URI for which an origin
cookie has been set.

For example, if in response to a GET request for
http://www.example.com/, a response as in Figure 2 is re-
ceived, then an origin cookie would be set with the key ‘foo’
and the value ‘bar’ for the origin http://www.example.com,
and would be sent on subsequent requests to that origin. A
subsequent GET request for http://www.example.com/ would
look like Figure 3.

Requests made to any other origin, even
https://www.example.com and http://example.com
would be made exactly as if the origin cookie for
http://www.example.com was never set.

The Origin attribute extending the semantics of Set-Cookie
itself is subtle and implies several semantic changes to other
settable attributes of cookies. If the Origin attribute is set,
the Domain attribute is no longer appropriate, and therefore
should be ignored. Similarly, the Secure attribute is no longer
appropriate, since it is implied by the scheme of the origin
for the cookie: if the scheme is https, the the origin cookie
effectively has the attribute – since it will only be sent over
a secure channel – and if the scheme is anything else, the
cookie does not have the attribute. Because the same-origin
policy considers different paths to be part of the same origin,
the Path attribute of cookies provides no security and should
also be ignored. The semantics of other attributes, such as
HttpOnly, Max-Age, Expires, etc. remain unchanged for origin
cookies.

Normal cookies are uniquely identified by their key, the
value of the Domain attribute, and the value of the Path
attribute: this means that setting a cookie with a key, Domain,
and Path that is already set does not add a new cookie, but
instead replaces that existing cookie. Origin cookies should
occupy a separate namespace, and be uniquely identified by
their key and the full origin that set it. This prevents sites from
accidentally or maliciously deleting origin cookies, in addition
to the other protections against reading and modifying, and
makes server-side use of origin cookies significantly easier.

Security. Because origin cookies are isolated between
origins, the additional powers of the related-domain attacker
and active network attacker in overwriting cookies are no
longer effective, since they were specifically exploiting the



lack of origin isolation with existing cookies, whether the
‘confusion’ was due to the scheme or domain of the origin.
Absent these additional powers, the related-domain attacker
and active network attacker are equivalent to the web attacker,
who cannot break the security of existing session management
based on the combination of cookies and secret tokens.

Implementation. Integrating origin cookies into existing
browsers will not involve significant modifications. As a proof
of concept, we implemented origin cookies in Chrome. The
patch totals only 573 lines.

6.2. Deployment

The easiest way for existing web applications to improve
their security using origin cookies is to add the Origin attribute
to all their cookies. Because the Origin attribute is backward-
compatible, browsers that do not yet implement origin cookies
will simply treat these as regular cookies, with degraded
security but no loss of functionality [17]. The presence of an
Origin-Cookie header effectively indicates support of origin
cookies.

Unfortunately, the ability to share cookies between schemes
and related domains is a valuable feature for many existing
web applications. Applications using both insecure and secure
communication, and collections of applications sharing session
state and deployed at different subdomains, can today manage
session state with only a single set of cookies. Origin cookies
cannot support this behavior directly without compromising
security.

Instead, origin cookies can provide integrity to separate
sessions, one for each origin used by a collection of web
applications, and a separate protocol can be used to federate,
or link, these sessions together. Linking the sessions will allow
web applications to share session state between origins, as was
previously facilitated using cookies. This linking is not difficult
to implement, and can be done with very little performance
impact.

Federation. An existing federation protocol, such as
OAuth [8], could easily be used to this end. However, OAuth
and similar protocols are designed to support mutually un-
trusting applications, which requires the use of cryptography
and pre-shared keys to guarantee security. Since the two
applications in this scenario are mutually trusting of each
other, a client-side protocol can be executed within the browser
using postMessage.

postMessage is a client-side API exposed in JavaScript
allowing two different origins to communicate securely. In this
case, we will use postMessage to securely communicate an
identifier from one trusting site to another, allowing requests
from either one to be associated with the same session.

For example, the following is a high-level description of a
simple federation protocol between HTTP and HTTPS, using
postMessage:

1) The user first visits the HTTP page. Using origin
cookies, a secure session is established. In addition, an

invisible IFRAME to a specific federation page on the
HTTPS site is created.

2) The HTTPS federation page, also using origin cook-
ies, establishes its own secure session. It computes a
federated session identifier using HMAC, binding its
session identifier and the origin of the enclosing page
together, and sends this identifier, via postMessage, to
the enclosing page, only if the origin of the enclosing
page is on an authorized whitelist.

3) The HTTP page receives the session identifier via
postMessage, checks that it originated at the HTTPS site,
and sets it as a new origin cookie.

After the above interaction, requests made to either site can
be associated, on the server side, with the same session, and
therefore session data can be easily shared. postMessage is
currently implemented in all browsers except Internet Explorer
6 and 7. For these browsers, a cross-site script tag can be used
instead, at the cost of a single network request. Note that the
federation protocol only needs to be run when a new session
is being established.

7. Future Work

Implementing origin cookies in browsers is a critical first
step to achieving session integrity for existing web applica-
tions. Frameworks, such as Java Servlets, ASP.NET, and Ruby
on Rails need to be updated to support origin cookies. Support
for federation, either in frameworks or other libraries, will be
important for many high-profile complex deployments.

Because HTTPS can be difficult or costly to deploy, many
have looked for a solution to session integrity that can work
over HTTP, yet still be secure against passive network at-
tackers (i.e. eavesdroppers) [18]. This is an interesting line
of research that is not solved by origin cookies.

8. Conclusion

We demonstrate that a very common class of attacker that
can critically compromise the security of most existing web
sites that use cookies for session management. While we
demonstrate two approaches to securing existing sites, those
approaches impose major burdens on operators in terms of
effort of implementation, constraints on existing infrastructure,
and deployment. Therefore, we propose a lightweight exten-
sion to cookies called origin cookies that allows web sites to
regain session integrity against these attackers, while imposing
minimal burdens on both implementors and existing sites that
do not yet use origin cookies. Even for complex deployments
of independent, interacting sites, we show how a easy-to-use
federation protocol can realize secure session sharing between
these sites.

References

[1] C. Evans, “Cookie forcing,” 2008. [Online]. Available: http://
scarybeastsecurity.blogspot.com/2008/11/cookie-forcing.html

http://scarybeastsecurity.blogspot.com/2008/11/cookie-forcing.html
http://scarybeastsecurity.blogspot.com/2008/11/cookie-forcing.html


[2] A. Barth, C. Jackson, and J. Mitchell, “Robust Defenses for Cross-
Site Request Forgery,” in Proceedings of the 15th ACM Conference on
Computer and Communications Security. ACM, 2008, pp. 75–88.

[3] C. Shiflett, “Cross-Site Request Forgeries,” 2004. [Online]. Available:
http://shiflett.org/articles/cross-site-request-forgeries

[4] D. Kristol and L. Montulli, “HTTP State Management Mechanism,”
Internet Engineering Task Force (IETF) RFC 2109, 1997.

[5] Mozilla Foundation, “Public Suffix List.” [Online]. Available: http:
//publicsuffix.org

[6] M. Kolãek, “Session Fixation Vulnerability in Web-based Applications,”
2002.

[7] D. Recordon and D. Reed, “OpenID Authentication 2.0 - Final,” 2007.
[Online]. Available: http://openid.net/specs/openid-authentication-2 0.
txt

[8] E. Hammer-Lahav and D. Recordon, “The OAuth 1.0 Protocol,” Internet
Engineering Task Force (IETF) RFC 5849, 2010.

[9] M. Wu, S. Garfinkel, and R. Miller, “Secure Web Authentication with
Mobile Phones,” in DIMACS Workshop on Usable Privacy and Security
Software, 2004.

[10] T. Close, “Web-key: Mashing with Permission,” in Proceedings of Web
2.0 Security and Privacy, vol. 2, 2008.

[11] D. Kristol, “Proposed HTTP State-Info Mechanism,” Internet
Engineering Task Force (IETF) RFC draft, 1995. [Online]. Available:
http://tools.ietf.org/html/draft-kristol-http-state-info-00

[12] A. Rideout, “Making security easier,” 2008. [Online]. Available:
http://gmailblog.blogspot.com/2008/07/making-security-easier.html

[13] “Making Twitter more secure: HTTPS,” 2011. [Online]. Available:
http://blog.twitter.com/2011/03/making-twitter-more-secure-https.html

[14] A. Rice, “A Continued Commitment to Security,” 2011. [Online].
Available: http://blog.facebook.com/blog.php?post=486790652130

[15] J. Hodges, C. Jackson, and A. Barth, “HTTP Strict Transport
Security (HSTS),” Internet Engineering Task Force (IETF)
RFC draft, 2011. [Online]. Available: http://tools.ietf.org/html/
draft-ietf-websec-strict-transport-sec-01

[16] Y. Pettersen, “Identifying origin server of HTTP
Cookies,” 2011. [Online]. Available: http://tools.ietf.org/html/
draft-pettersen-cookie-origin-02

[17] A. Barth, “HTTP State Management Mechanism,” Internet Engineering
Task Force (IETF) RFC draft, 2011. [Online]. Available: http:
//tools.ietf.org/html/draft-ietf-httpstate-cookie-23

[18] E. Butler, “Firesheep,” 2010. [Online]. Available: http://codebutler.com/
firesheep

http://shiflett.org/articles/cross-site-request-forgeries
http://publicsuffix.org
http://publicsuffix.org
http://openid.net/specs/openid-authentication-2_0.txt
http://openid.net/specs/openid-authentication-2_0.txt
http://tools.ietf.org/html/draft-kristol-http-state-info-00
http://gmailblog.blogspot.com/2008/07/making-security-easier.html
http://blog.twitter.com/2011/03/making-twitter-more-secure-https.html
http://blog.facebook.com/blog.php?post=486790652130
http://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-01
http://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec-01
http://tools.ietf.org/html/draft-pettersen-cookie-origin-02
http://tools.ietf.org/html/draft-pettersen-cookie-origin-02
http://tools.ietf.org/html/draft-ietf-httpstate-cookie-23
http://tools.ietf.org/html/draft-ietf-httpstate-cookie-23
http://codebutler.com/firesheep
http://codebutler.com/firesheep

	Introduction
	Related Work
	Threat Model
	The Web Attacker
	The Related-Domain Attacker
	The Active Network Attacker

	Current Session Management
	Confidentiality
	Integrity
	Attacks on Integrity

	Session Integrity in Current Browsers
	Integrity through Strict Transport Security
	Integrity through Custom Headers

	Session Integrity in Future Browsers
	Origin Cookies
	Deployment

	Future Work
	Conclusion
	References

