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Abstract. “Security Keys” are second-factor devices that protect users
against phishing and man-in-the-middle attacks. Users carry a single de-
vice and can self-register it with any online service that supports the
protocol. The devices are simple to implement and deploy, simple to
use, privacy preserving, and secure against strong attackers. We have
shipped support for Security Keys in the Chrome web browser and
in Google’s online services. We show that Security Keys lead to both
an increased level of security and user satisfaction by analyzing a two
year deployment which began within Google and has extended to our
consumer-facing web applications. The Security Key design has been
standardized by the FIDO Alliance, an organization with more than
250 member companies spanning the industry. Currently, Security Keys
have been deployed by Google, Dropbox, and GitHub. An updated and
extended tech report is available at https://github.com/google/u2f-

ref-code/docs/SecurityKeys_TechReport.pdf.

1 Introduction

Recent account takeovers [1–3] have once again highlighted the challenge of
securing user data online: accounts are often protected by no more than a
weak password [4] and whatever implicit signals (if any) that the online service
provider has collected to distinguish legitimate users from account hijackers.

Academic research has produced numerous proposals to move away from
passwords, but in practice such efforts have largely been unsuccessful [5, 6]. In-
stead, many service providers augment password-based authentication with a
second factor in the form of a one-time passcode (OTP), e.g., [7, 8]. Unfortu-
nately, OTPs as a second factor are still vulnerable to relatively common attacks
such as phishing [9]. In addition, OTPs have a number of usability drawbacks
(see Section 2). These factors limit the success and deployment of OTPs as a
reliable and secure second factor.

Meanwhile, secure authentication factors, which use challenge/response-based
cryptographic protocols, have their own barriers to deployment. National ID
cards [10, 11] and smart cards require custom reader hardware and/or driver
software to be installed prior to use. Depending on the implementation, these
systems also make it challenging for users to protect their privacy (see Section 2).

https://github.com/google/u2f-ref-code/docs/SecurityKeys_TechReport.pdf
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In this work, we present Security Keys: second factor devices that improve
the state of the art for practical authentication for real consumers in terms of
privacy, security, and usability. This is evidenced by the fact that Security Keys
have been publicly deployed by Google [12], Dropbox [13], and GitHub [14]. Secu-
rity Keys were designed from the ground up to be practical: simple to implement
and deploy, straightforward to use, privacy preserving, and secure against strong
attackers. We have shipped support for Security Keys in the Chrome browser,
have deployed it within Google’s internal sign-in system, and have enabled Se-
curity Keys as an available second factor in Google’s web services. In this work,
we demonstrate that Security Keys lead to both an increased level of security and
user satisfaction as well as cheaper support cost. The Security Key design has
been standardized within an industry alliance, the FIDO Alliance [15] as the
Universal Second Factor (U2F) protocol.

2 Related Work

We now give an overview of the most relevant related work. For detailed back-
ground of the field, please consult a variety of excellent survey works [5,6,16,17].

One-Time Passcodes. OTPs are short (typically 6 to 8 digit) codes that are
one time use and are sent to the user via SMS or are generated by a separate
physical dongle. Though they provide more security than passwords, OTPs have
a number of downsides. First, they are vulnerable to phishing and man-in-the-
middle attacks [9]. Second, OTPs that are delivered by phones are subject to
data and phone availability, while those that are generated by dongles cause
the user to have one dongle per web site. Finally, OTPs provide a sub-optimal
user experience as they often require the user to manually copy codes from
one device to another. Security Keys are resistant to phishing and man-in-the-
middle by design; our preliminary study also shows that they provide a better
user experience.

Smartphone as Second Factor. A number of efforts have attempted to lever-
age the user’s phone as a cryptographic second factor, both within academia
(e.g., [18]) and in industry (e.g., [19]). While promising, they face a number of
challenges: for example, protecting application logic from malware is difficult
on a general purpose computing platform. Moreover, a user’s phone may not
always be reachable: the phone may not have a data connection or the battery
may have run out. Security keys require no batteries and usually have a dedicated
tamper-proof secure element.

Smart Cards. Security Keys fit into the “what you have” category of authen-
tication schemes and have a close relationship to smart cards. While Security
Keys can be (and have been) implemented on top of a smart card platform such
as JavaCard [20], Security Keys express a particular protocol for which smart
cards are just one possible implementation platform.

TLS Client Certificates. TLS Client Certificates [21] traditionally bear the
user’s identity and can be used for on-line authentication. When users navi-



gate to a web service that requires TLS client authentication, their browser will
prompt the user for their client certificate. Unfortunately, current implementa-
tions of TLS client certificates have a poor user experience. Typically, when web
servers request that browsers generate a TLS client certificate, browsers display
a dialog where the user must choose the certificate cipher and key length—a
cryptographic detail that is unfamiliar and confusing to most users.

When web servers request that the browser provide a certificate, the user is
prompted to select the client certificate to use; accidentally choosing the wrong
certificate will cause the user’s identity to leak across sites. In addition, because
client certificates are transmitted in the clear, the user’s identity is revealed
during TLS client certificate transfer to any network adversary. TLS client cer-
tificates also suffer from a lack of portability: they are tough to move from one
client platform to another. Security Keys have none of these issues: as we will
describe, they are designed to be fool-proof: with users’ privacy in mind, to be
simple to use, and to be portable.

Electronic National Identification Cards. Some countries have deployed
national electronic identification cards. In Estonia, for example, electronic ID
cards “are used in health care, electronic banking and shopping, to sign contracts
and encrypt e-mail, as tram tickets, and much more besides—even to vote” [11].
Despite their rich capabilities, national identity cards have not become a popular
global online authentication mechanism [10]. One possible reason is that current
national identity cards require special hardware (a card reader) and thus are hard
to deploy. Another possible reason is that national identity cards are by definition
controlled by one government, which may not be acceptable to businesses in
another country. Security Keys have no such downsides: they work with pre-
installed drivers over commonly available physical media (USB, NFC, Bluetooth)
and are not controlled or distributed by any single entity.

Finally, some approaches can combine multiple elements, e.g., some electronic
ID cards combine smart card, TLS client certificate, and government identifica-
tion.

3 Threat Model

We briefly outline major attackers and attacks that we consider in our design.

3.1 Attackers

Web Attackers. Entities who control malicious websites (e.g., bad.com1) are
called web attackers. We believe that virtually all users might accidentally visit
such a malicious site. The attacker may design bad.com to visually mimic a
user’s bank or e-mail website in an attempt to get (i.e., phish) the user’s login
credentials. As the attackers are quite skilled, and may occupy clever URLs
(such as bamk.com2), we assume that most users will fall for this trick. That is,

1 This is just an example, the real bad.com may not be malicious.
2 This is just an example, the real bamk.com may not be malicious.



they will enter credentials such as their password into the attacker-controlled
bad.com.

Related-Site Attackers. Some attackers will compromise sites having weak
security practices in order to steal the site’s user credentials. As users often reuse
credentials across sites [22], related-site attackers will reuse the stolen credentials
on more secure sites in hopes of accessing the user’s accounts [23].

Network Attackers. Adversaries may be able to observe and modify network
traffic between the user and the legitimate site. We call such adversaries network
attackers. For example, a network attacker might sniff wireless traffic in a coffee
shop [24, 25]) or a nation-state may interpose on all traffic that traverses their
physical borders [26, 27]. A man-in-the-middle attacker can defeat the security
properties offered by TLS [21], e.g., by forging rogue server TLS certificates [28].
Other network attackers may record traffic and subsequently exploit the TLS
cryptographic layer [29,30] to extract authentication data.

Malware Attackers. In some cases, attackers may be able to silently install and
run arbitrary software on users’ computers; such attackers are malware attackers.
We assume that such software can run with arbitrary privileges and can freely
help itself to cookies, passwords, and any other authentication material.

3.2 Attack Consequences

We highlight two of the most concerning attack consequences below.

Session Duplication. In some cases, an attacker may be able to steal creden-
tials that allow him/her to access the user’s account from any computer and at
any time. For example, if an attacker is able to steal cookies or passwords, then
he/she may be able to log into the victim’s account at virtually any subsequent
date (assuming the password isn’t changed, and the cookie doesn’t expire).

Session Riding. If an attacker can only access or modify the user’s account
when the user is actively using his/her computer, we call this attack session
riding. For example, if the website always requires the user to begin a new session
by providing proof of a hardware device that the attacker does not control, the
attacker is only able to ride the user’s active sessions.

Security Keys make session duplication and riding much more difficult.

4 System Design

We now give a system overview; for details please consult the official specification
on the FIDO Alliance website [15]. In juggling the various requirements, we
settled on the following design goals:

– Easy for Users: Using Security Keys should be fast, easy, and “brainless”.
It must be difficult to use Security Keys incorrectly or insecurely.



– Easy for Developers: Security Keys must be easy for developers to integrate
into their website through simple APIs.

– Privacy : Security Keys should not allow tracking of any kind. In addition, if
a Security Key is lost, it should be difficult for an attacker to get any useful
information from a Security Key.

– Security : Security Keys should protect users against password reuse, phish-
ing, and man-in-the-middle attacks.

4.1 System Overview

Security Keys are intended to be used in the context of a web application in
which the server wishes to verify the user’s identity. At a high level, Security Keys
support the following commands which are provided to web pages as browser
APIs (see Section 5).

– Register : Given this command, the Security Key generates a fresh asymmet-
ric key pair and returns the public key. The server associates this public key
with a user account.

– Authenticate: Given this command, the Security Key tests for user presence
and exercises its private key to provide a response. The server can verify
that the response is valid, and thus authenticate the user.

Figure 1 shows two different Security Keys manufactured by Yubico—one
of the several vendors who produce Security Keys. Each devices communicates
over a USB interface and has a capacitive touch sensor which must be touched
by the user in order to authorize any operation (register or authenticate). Both
devices contain a tamper-proof secure element.

Fig. 1: Two Security Keys. Both have a USB interface and a capacitive touch
sensor. One also has an NFC interface.

4.2 Detailed Design

We now focus on the details of both registration and authentication. Full speci-
fications can be found on the FIDO Alliance website [15].

Registration. During registration (see Figure 2), the relying party—the server—
produces a random challenge. The user’s browser binds the server’s challenge into
a Client Data structure, to be covered shortly. The browser sends the server’s
web origin and a hash of the Client Data to the Security Key. In response, the



Security Key generates a new key pair along with a key handle, which will also be
covered later. The Security Key associates the key pair with the relying party’s
web origin and then returns the generated public key, key handle, an attestation
certificate, and a signature over: 1. the web origin, 2. hash of the client data, 3.
public key, and 4. key handle. The web browser then forwards this data, along
with the client data, back to the website. The website verifies the signature and
associates the public key and key handle with the user’s account.

Security Key
Browser
(Client)

Website
(Relying Party)

challenge
origin, hash(challenge, channel id)

ClientData

generate:
  key kpub
  key kpriv
handle Hk ←
  store(o, kpriv)

kpub, Hk, attestation cert, signature(c, kpub, Hk)
ClientData, kpub, Hk,

s store:
  key kpub
  handle Hk

c

attestation cert, s

Fig. 2: Security Key registration.

Security Key
Browser
(Client)

Website
(Relying Party)

handle, challenge

retrieve:
  key kpriv
from:
  handle Hk
counter++

counter, signature(c, counter)
counter, s, ClientData

s check:
  signature
using:
 key kpub

Hk

origin, Hk, hash(challenge, channel id)

ClientData

c

retrieve:
  key kpub
from
  handle Hk

set cookie

Fig. 3: Security Key authentication.

Authentication. During authentication (see Figure 3), the relying party re-
quests that the Security Key exercise a particular key which has previously been
registered for a user account. Specifically, the relying party sends the desired
key’s handle and a challenge to the web browser. The browser generates the
client data (see above) and sends the hash of the client data along with the
key handle and the web origin to the Security Key. If the Security Key does
not recognize the key handle, or doesn’t agree that it is associated with the web
origin that requested the signature, it rejects the request. Otherwise, it produces
a signature of the client data. The Security Key signs two additional attributes:
whether a Test of User Presence (TUP) succeeded, and a counter value. The Test
of User Presence is described in more detail below. The counter value is a 32-bit
counter that is incremented with every signature the Security Key performs; its
presence allows the server to detect potential cloning of a Security Key, e.g.,
when the counter value appears to decrease from one signature to the next. The
counter is described in more detail in Section 7.2.



The browser passes the signature, along with the TUP and the counter value,
to the server. The server then checks the signature against the public key it has
registered and authenticates the user if the signature matches.

Device Attestation. Each Security Key must provide an attestation certificate
during registration. This allows servers to gate the use of a particular security
key (for example, if servers trust only certain Security Key suppliers). A related
desire is revocability: if a device or model is known to have flaws or have been
compromised, a server might wish to not accept it.

Individually identifying devices would reveal a unique identifier for a device
across unrelated origins, violating the user’s privacy. To achieve both security
and privacy, we recommended that devices implement batch attestation: a batch
of devices shares a single attestation key (and certificate), such that all devices
with a known flaw can be revoked together, and users’ privacy is still respected:
at worst, a device can be identified as a member of a batch. Alternatives for
device attestation are explored further in Section 7.1.

Client Data. The client data binds the server-provided challenge to the browser’s
view of its connection to the server. Specifically, the client data includes the type
of the request (register or authenticate), the challenge, and, when possible, the
TLS channel ID [31, 32] of the connection. Binding the TLS channel ID allows
the server to detect the presence of a TLS Man in the Middle. When a server
receives a signed TLS channel ID, it can compare it with the TLS channel ID it
observes in the TLS layer. If they differ, the server will be aware of the presence
of a TLS Man in the Middle, and can abort the connection.

Test of User Presence. The Test of User Presence (TUP) allows the caller
to test whether a human is present during command execution. This serves two
purposes: first, it provides a mechanism for human confirmation of commands.
Second, it allows web applications to implement a policy based on that check,
e.g. “Transactions for a dollar amount greater than $1,000 require confirmation,”
or “Credentials must be re-presented by a human being after 90 days.”

TUP implementation is left up to the device manufacturer. One vendor uses
a capacitive touch sensor, others employ a mechanical button, while another
makes a device that stays powered up only a short time after insertion into a
USB port, requiring the user to reinsert the device for every operation.

Cryptographic Primitives. For all signing operations, we chose ECDSA over
the NIST P-256 curve. For all hashing operations, we chose SHA-256. The choice
of the curve and hash algorithm was made because of their wide availability on
embedded platforms. At this time we believe these primitives, which offer 128
bit security, to be sufficiently secure.

5 Implementation

We have implemented end-to-end support for Security Keys. This involved build-
ing a large number of components; we describe some of them below (others were



omitted because of space). Note that all of the components have been open-
sourced, are actively maintained, and can be found at https://github.com/

google/u2f-ref-code.

5.1 Browser Support

We have implemented and shipped support for Security Keys as part of the
Chrome web browser (available since version 41.) The browser support consists
of JavaScript APIs that can be called by any web application. In total, the
support consists of roughly 8,000 lines of code.

Register Method. A web server requests a new Security Key registration by
making use of a new browser API:

u2f.register()

This API accepts a challenge and a list of already-registered key handles. The list
of already-registered key handles allows the browser to avoid double registration
of the same Security Key. If the browser finds an eligible Security Key, the client
sends a register command to the Security Key, described in more detail in the
next section. Upon successful completion of the register command, the browser
sends the Security Key’s Registration Message output, along with the client
data described in Section 4.2, to the server. The server verifies the registration
signature and that the client data matches its own view of the request. Finally,
the server can check the attestation certificate to verify that it meets the server’s
requirements. Assuming all parameters match and are found acceptable, the
server stores the key handle Hk and the public key kpub for the user’s account.

Sign Method. A web server requests a signature from a Security Key by making
use of a new browser API:

u2f.sign()

The parameters to the sign API are a challenge, and any registered key handles
for the user. The browser then searches for available Security Keys. For each
device found, the browser sends a sign command, described in more detail in
the next section. Upon successful completion of a sign command, the browser
provides the signature to the server, along with the client data (Section 4.2)
and the key handle Hk that produced the signature. The server checks that the
signature verifies with the public key kpub it has stored for Hk, and that the
counter value has increased. The server also verifies the client data against its
own view of the request. If all the checks succeed, the user is authenticated.

5.2 Security Key Token Implementation

We developed a JavaCard-based implementation of a Security Key. The under-
lying applet consists of approximately 1,500 lines of Java code. In addition, as

https://github.com/google/u2f-ref-code
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we describe shortly, we use traditional cryptographic techniques to support an
arbitrary number of keys and origins given the limited storage capabilities of
embedded platforms.

Security Keys support two basic operations: register, to create a new key
pair, and sign, to produce a cryptographic signature.

Register Operation. The register operation takes two parameters, an applica-
tion parameter—the web origin provided by the browser—and a challenge. The
Security Key generates a new key pair (kpub, kpriv) for the application parame-
ter. It then performs a store operation to store both the application parameter
and the private key kpriv. The store operation yields a key handle Hk and is
discussed more fully shortly. The public key kpub and the key handle Hk, along
with the challenge parameter and application parameter, are then signed with
the device’s attestation private key, Privattest. The Security Key provides as
output a Registration Message (see Figure 4), which includes the public key
kpub and the key handle Hk, as well as the device attestation certificate.
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Sign Operation. The sign operation takes three parameters, an application pa-
rameter, a key handle, and a challenge. During authentication, the Security Key
first performs a retrieve operation to retrieve the stored application parameter
and the private key for the key handle. If the Security Key does not recognize the
key handle, it rejects the operation. Similarly, if it recognizes the key handle but
the retrieved application parameter does not match the application parameter
to the sign operation, it rejects the operation with the same error value as if it
did not recognize the key handle. In this way, a web site that tries to make use of
a key handle that was registered on a different origin cannot learn that the key
handle is valid for the other origin. The retrieve operation is discussed further
shortly.

Once the Security Key has retrieved a valid private key kpriv for the key
handle, and verified that it was generated for the supplied application parameter,
it increments the counter value and signs a concatenation of the Test of User
Presence indication, the new counter value, and the challenge parameter. It
provides the signature s to the browser, along with the Test of User Presence
indication and the new counter value. The result of the sign operation is the
Authentication Message shown in Figure 5.



5.3 Store and Retrieve Operations

Store and retrieve can be thought of database operations: storing a private
key yields an index into a table, and this index is returned as the key handle.
Retrieving a key handle looks up the value in the table at the given index.

However, a database-like implementation reduces privacy and usability: a
predictable index for key handles reveals the number of accounts a Security
Key is being used with. Additionally, the users need to be aware of the storage
capacity of Security Keys to ensure she doesn’t run out of space in the key
database.

In our reference implementation, store is instead implemented as a key wrap-
ping operation: the private key kpriv and the application parameter are encrypted
using a secret key Kwrap known only to a single Security Key. By implementing
store and retrieve as key wrap/unwrap operations, the Security Key reference
implementations can store an unlimited number of key handles: the storage is
implemented by the server.

In order to avoid known plaintext attacks, our reference implementations ob-
scure the application parameter with a second secret key, Kapp, also known only
to a single Security Key. The obscured application parameter and the private
key are then interleaved together, prior to encrypting with the wrapping key.
In the reference implementation, two-key 3DES was chosen as the cipher, due
to the quality of the implementation on the hardware we used. Algorithmically,
our key wrapping implementation is:

function store(kpriv, app)
app′ ← Encrypt(app)Kapp

plaintext← Interleave(kpriv, app
′)

HK ← Encrypt(plaintext)Kwrap

return HK

end function

function retrieve(HK , app)
app′ ← Encrypt(app)Kapp

plaintext← Decrypt(HK)Kwrap

(kpriv, app
′′)← Deinterleave(plaintext)

constant-time check(app′ == app′′)
return kpriv

end function

It should be noted that key wrapping is an optional optimization vendors may
employ, and that our implementation is one approach. The FIDO U2F specifica-
tions allow device manufacturers to choose any approach for key wrapping. For
example, one vendor’s approach is described in [33].

5.4 Server Implementation

We implemented, open-sourced, and actively maintain a reference Security Key
server. It runs on the Google App Engine platform and consists of approximately
2,000 lines of Java code.

6 Evaluation

We evaluate Security Keys using a number of metrics. We begin by comparing
the usability, deployability, and security of Security Keys to existing and prior



technologies. Next, we discuss the performance of various Security Key hard-
ware devices. Finally, we give an in-depth analysis of our deployment experience
including effect on users, support cost, and other relevant variables.

6.1 Comparative

Table 1: Comparative evaluation of Security Keys to similar schemes
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(incumbent) Web passwords • • • ◦ • • • • • • • ◦ • • • •

Hardware tokens
Security Keys ◦ ◦ • • • • ◦ ◦ • • • • • • • • • • • • •
RSA SecurID • ◦ ◦ • • • • • • • • • • •

YubiKey • ◦ ◦ • • • • • • • • • • • •

Phone-based
OTP over SMS • • ◦ • ◦ ◦ ◦ • • • • • • • • • ◦ • •
Google 2-Step ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ • • • • • • •

• = offers the benefit; ◦ = almost offers the benefit; no circle = does not offer the benefit.

We use the rating criteria defined in Bonneau et al. [5] to compare Secu-
rity Keys to passwords alone, as well as to other second factor authentication
methods in common use in online accounts today. A summary of the compar-
ison can be seen in Table 1. We use the ratings Bonneau et al. assign, with
the exception of the phishing protection existing second factor schemes provide.
We discuss this more shortly. In short, Security Keys offer similar usability to
just passwords while being much more secure. In addition, Security Keys can be
deployed for supported browsers with a relatively small server-side change.

Usability. Security Keys partially offer the memorywise-effortless and scalable-
for-users benefits because they dramatically reduce the risk of password reuse.
They are not physically-effortless because they still require a password entry,
but the additional burden—a button push—is low. They are both easy-to-learn
and efficient-to-use, and they perform with infrequent-errors. These assertions
are further supported in Section 6.3.

Deployability. Security Keys are accessible—the physical burden of tapping a
button is minimal; visually impaired users within Google successfully use Se-



curity Keys. Security Keys nearly offer a negligible-cost-per-user : the user only
needs one for any number of websites, and they are available from multiple
vendors at varying prices. Bonneau et al. do not offer guidance to what price is
considered “negligible,” so we give Security Keys partial credit. Security Keys are
partially browser-compatible: one major browser has built-in support for them,
and we are working toward standardizing support for them.

Security Keys are mature: they have been implemented and deployed on sev-
eral large web properties, discussed further in Section 6.3. Finally, they are non-
proprietary : There are open standards and source for them. They are available
from multiple vendors. Support for them is deployed in one major browser [12],
with suport from another major browser announced [34]. Multiple servers have
implemented support for them.

Security. Security Keys generate assertions that protect users against phishing
and website attackers. While Bonneau et al. claim existing second factor schemes
provide protection against phishing, they do so under the assumption that relay-
based or realtime phishing attacks are hard to mount. We disagree given recent
evidence of successful phishing campaigns against accounts protected by OTP
credentials [9], hence we downgrade the protection for OTP-based second fac-
tors. Security Keys generate unique key pairs per account and restrict key use
to a single origin, protecting users against tracking across websites/linkability.
Unlike other hardware 2nd factor solutions such as RSA SecurID, there is no
trusted third party involved. Security Keys, when used with TLS Channel ID,
also provide resistance against man-in-the-middle attacks by letting servers rec-
ognize the presence of two different TLS connections. Finally, Security Keys
limit the user’s exposure to session riding by requiring that a TUP is performed.
Note that Security Keys do not allow transaction confirmation via a trusted
display, therefore clever attacker may still alter transaction details (e.g., transfer
amounts)—though not without a TUP.

6.2 Hardware Performance

The performance of an operation involving a Security Key involves many vari-
ables. Nevertheless, our aim was to create a protocol that seems “fast enough”
during ordinary use. Our informal guideline was that a sign operation should
complete in well under a second, while registration should complete in around a
second. Measured times for both operations for commercially available hardware
are shown in table 2. These times show the “raw” performance time—the time
it takes for hardware devices to execute each operation.

With these speeds, we believe we achieved an experience whereby users do
not find the additional step (beyond a password) onerous. We will expand upon
our experience further in the next section.

6.3 Deployment Experience

Because of the usability and security benefits Security Keys provide over OTPs,
we have deployed them to more than 50,000 employees, and made them an



Table 2: Security Key performance. Raw time needed to complete an operation.
Operation time (ms)

Device Enroll Sign

Happlink FIDO U2F 1210 660
Yubico FIDO U2F 394 192
Yubico YubiKey NEO 398 192

available option for consumer accounts. Our users have been very happy with
the switch: we received many instances of unsolicited positive feedback.

The benefits of Security Keys are difficult to quantify. The first benefit is
increased security: users are now protected against phishing, including from
well-known campaigns. Unfortunately, the impact of this benefit can only be
measured in terms of what did not happen, hence it is hard to quantify. Other
impacts include increased productivity due to decreased time spent authenticat-
ing, and decreased support cost; we quantify these below.

Time Spent Authenticating. We compared the time it takes to authenticate
using Security Keys versus other two-factor methods, using two user populations:
Google employees and consumers using our web products.

Figure 6 shows the average time spent authenticating, per user, for Google’s
employees during an arbitrary two-day period. All authentication steps are mea-
sured, i.e., a user is entering a password and providing a second factor. In the
measurements, Security Keys are compared with OTPs, where the OTP may be
provided by one of several sources, the most prevalent being a USB device that
acts as a keyboard. The data originated from authentication events in a two-day
period and thus could be biased toward those who reauthenticate frequently,
and therefore are best trained in the use of their second factor. Because Security
Keys were considered equivalent to OTPs during the period of study, Security
Key users were not prompted more or less frequently than OTP users, and we
do not expect a bias between the two populations as a result.

Total authentication time decreased markedly when using Security Keys; this
may account for the overwhelmingly positive reaction. Previously, the dominant
OTP mechanism in the company was a USB-based device very similar to a
Security Key, but Security Keys are still faster. One possible reason is that most
employees received a tiny Security Key that is meant to never be removed from
the USB port. Thus, when the user is prompted for a second factor, she need
only touch the Security Key’s button, rather than having first to find and insert
the device. A second reason is that the USB OTP devices act like a keyboard,
and require the user to 1) navigate to a form field before touching the device to
release the OTP, then 2) press Enter or click a button to a submit a web form.
With Security Keys, on the other hand, the JavaScript API returns the result
of the Security Key request directly to the page, and the form submission can
happen automatically as a result without additional user action.

Figure 6 also shows the average time required to collect a second factor
from consumers over several days in 2016. Again, Security Keys were faster for
consumers to use than OTPs, whether they were delivered by SMS or via a



smartphone app. Earlier in this work, we gave several reasons why this could
be: SMS delivery can suffer delays, while OTPs in a smartphone app must be
manually typed by users.
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Fig. 6: Time spent authenticating

Authentication Failure Rate. Authentication failures result in increased au-
thentication time and user frustration. In our examination of the time period
studied, 3% of OTP-based authentications resulted in failure, while Security
Keys did not present any authentication failures.

Support Cost. Figure 7 shows the number of support incidents we received for
two kinds of authentication second factors for the period in which we transitioned
from using OTPs to Security Keys, normalized by the total number of employees,
on a linear scale. The number of authentication events per user did not depend
on whether the users had Security Keys or OTPs for a second factor, so the
number of support events is believed to be representative. There is a gap in data
collection, when support data were transitioned for one system to another, and
Security Key support incidents were not collected. The approximate percentage
of the company actively using Security Keys is also shown.

The number of support incidents per user rose slightly as the rollout of Secu-
rity Keys expanded, before decreasing again. It’s worth noting that the support
load was higher for OTP than for Security Keys for all time periods. By end of
the period studied, the vast majority of the company had switched from OTP to
Security Keys, and new employees were no longer given OTP devices. Our sup-
port organization estimates that we save thousands of hours per year in support
cost by switching from OTP to Security Key.

Hardware Cost. For the corporate-wide deployment we studied, the devices
purchased had similar per-unit cost to the USB-based OTP devices they re-
placed. For this deployment, one Security Key was allotted per computer per
employee. Roughly, this equated to giving each employee 2 Security Keys, on
average. This implies that more was spent on hardware Security Key tokens
than for hardware OTP tokens. For the deployment, we found the increased
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Fig. 7: 2nd factor support incidents per employee per month (gaps where data
are unavailable)

user productivity, and decreased support cost, were worth the increased hard-
ware cost.

For consumers, multiple vendors provide Security Keys at different price
points, some as low as $6 USD3. Since users only need one device, rather than
one device per account or site, the resulting cost in our opinion approaches the
“negligible cost per user” suggested by Bonneau et al. [5].

7 Discussion

7.1 Attestation

We chose batch attestation in order to allow servers to assess the trustworthi-
ness of a device, while still affording privacy for the user. There are two other
alternatives that offer attestation while protecting users’ privacy: employing a
trusted third party, and using advanced cryptographic techniques.

In a trusted third party scheme, a device makes an individually identifiable
attestation statement to a privacy CA, first proposed by the Trusted Computing
Group in their Trusted Platform Module (TPM) 1.1 specifications. A privacy CA
provides its own anonymous attestation of the device’s trustworthiness to the
interested party. However, one challenge is that the privacy CA must always be
available and reachable. Another is the distributed trust it requires: Who will run
the privacy CA? Can different entities pick a privacy CA that suits them? What
happens if each party doesn’t trust the same privacy CA? Finally, a privacy CA
would learn the identity of many individuals, presenting a single point of failure
for compromising user privacy.

3 http://smile.amazon.com/s/ref=sr_kk_1?rh=k:u2f

http://smile.amazon.com/s/ref=sr_kk_1?rh=k:u2f


Advanced cryptographic techniques such as Direct Anonymous Attestation [35]
and Enhanced Privacy ID [36] address many of the shortcomings of a privacy
CA scheme, by allowing revocation without involving a trusted third party. We
did not choose these approaches because they have not yet been demonstrated
to be fast enough on low-cost hardware. For example, Bichsel et al. [37] evalu-
ated an implementation of an RSA-based scheme running on JavaCard devices,
which runs in roughly 16.5 seconds. This is well beyond the “around a second”
guideline we had for registration operations.

7.2 Signature Counter

Our design includes a 32-bit signature counter, but leaves some decisions up to
implementers: (1) wrapping behavior and (2) increment amount. Since a TUP is
performed with every signature, a 32-bit counter provides the ability to perform
a signature per second for more than 100 years before wrapping, and it seems
reasonable that this is outside the lifetime of a Security Key. For the increment
amount, an implementer could have a per-key handle counter, or could use a
single global counter on a particular device. The latter choice is cheaper and
easier to implement, although it presents a minor privacy leak if the counter
update amount is predictable. Implementers could choose to increment a global
counter by a randomly varying amount, though they would have to take care to
avoid early counter wrapping as a result.

8 Conclusion

We have presented Security Key, a special-purpose device for improved second
factor authentication on the web. Security Keys protect users against password
reuse, phishing, and man-in-the-middle attacks by binding cryptographic asser-
tions to website origin and properties of the TLS connection.

Security Keys also score favorably in the usability framework established by
Bonneau et al. [5]. This is further substantiated by our preliminary data analysis
which quantifies the benefits of Security Keys in a two-year deployment study
by measuring reduction in sign-in times experienced by users and reduction in
burden on a support organization.

The Security Key protocol has been standardized within the the FIDO Al-
liance organization as the Universal Second Factor (U2F) open standard. We
have open-sourced a reference implementation of the standard. Security Keys
are supported by the Chrome browser and by the login system of major web
service providers such as Google, GitHub, and DropBox. We hope this paper
serves as an academic foundation to study and improve Security Keys going
forward. Note, an updated and extended tech report is available at https://

github.com/google/u2f-ref-code/docs/SecurityKeys_TechReport.pdf.
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