
Auth-SL - A System for the Specification and
Enforcement of Quality-Based Authentication

Policies

Anna C. Squicciarini, Abhilasha Bhargav-Spantzel,
Elisa Bertino, and Alexei B. Czeksis

Department of Computer Science, Purdue University
{asquicci,bhargav,bertino,aczeskis}@purdue.edu

Abstract. This paper develops a language and a reference architec-
ture supporting the management and enforcement of authentication poli-
cies. Such language directly supports multi-factor authentication and the
high level specification of authentication factors, in terms of conditions
against the features of the various authentication mechanisms and mod-
ules. In addition the language supports a rich set of constraints; by using
these constraints, one can specify for example that a subject must be au-
thenticated by two credentials issued by different authorities. The paper
presents a logical definition of the language and its corresponding XML
encoding. It also reports an implementation of the proposed authentica-
tion system in the context of the FreeBSD Unix operating system (OS).
Critical issues in the implementation are discussed and performance re-
sults are reported. These results show that the implementation is very
efficient.

1 Introduction

Authentication is the process by which systems verify the identity claims of
their users. It determines who the user is and if his claim to a particular identity
is true; authenticated identities are then the basis for applying other security
mechanisms, such as access control. Generally speaking, a user can be authenti-
cated on the basis of something he holds, he is, or he knows.Something you know
is typically implemented through mechanisms such as password, or challenge-
response protocols. The something you hold approach is implemented through
token-based mechanisms, smartcards, or a PIN that the user possesses and must
present in order to be authenticated. Finally, the who you are paradigm is based
on biometrics and includes techniques such as fingerprint scans, retina scans,
voiceprint analysis, and others.

A same system may have resources with different requirements concerning
authentication strengths for the users wishing to access them. A straightforward
solution to authentication for resources with such heterogeneous requirements
is based on a conservative approach that maximizes authentication checks each
time a user connects to the system. However, such a solution may result in

S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 386–397, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Auth-SL - A System for the Specification and Enforcement 387

computationally consuming authentication tasks and may also be very expensive
and complex to deploy. For example, adopting one-time passwords [12] for all
users of an organization, independently from the tasks they have to perform and
the resources they have to access, may be very expensive; ideally one would like to
require such authentication measures only for users who need to access sensitive
resources and use conventional passwords for the other users. Additionally, such
an approach does not avoid the risk of session hijacking.

We believe that authentication should be based on a variety of mechanisms
targeted to the resource security requirements and be easily configurable. Iden-
tity of users should always be known and certain during the whole duration of a
user session within the system, especially as the user browses multiple resources.
Continuous authentication [3] has been proposed to tackle issues related to fake
authentication from attackers. Most approaches to continuous authentication are
based onbiometric techniques, like keyboard typing recognition or face recognition
through trusted cameras [7]. However these approaches require costly machinery
and tools and in addition are based on the assumption that the one method of
authentication is to be accepted for every possible resource the user connects to.

Logic based authentication approaches [1, 15] have been proposed to support a
weak form of continuous authentication through the association of multiple prin-
cipals with each user. However, these approaches have mostly focused on abstract
representationof roles, groups, anddelegation.Mechanically generatedproofs have
resulted to be impractical to compute. As we discuss in more detail in the related
work section, such approaches are not expressive enough to support fine-grained
authentication policies. We thus believe that more articulated solutions are needed
based on the use ofmultiple authentication mechanisms combined through authen-
tication policies and on the association of authentication requirements with the
protected resources. The goal of our work is to develop such a solution.

We propose an authentication framework based on an expressive authentica-
tion policy language. By using such language, one can specify how many authenti-
cation factors are required and of which type, for accessing specified resources, or
impose constraints on the authorities by which credentials used for authentication
have to be provided, thus providing a quality-based authentication. Flexibility in
specifying the various factors for authentication is important as typical two-factor
authentication mechanisms may not be sufficient to satisfy the security require-
ments of a given system [16]. It is important to notice that the SAML (Security
Assertion Markup Language) standard [11] supports the encoding of authentica-
tion statements for exchange among sites in a distributed system. The goals of our
authentication policy language are different from the goals of SAML. SAML is a
standard for encoding authentication statements; such a statement typically as-
serts that a given subject has been authenticated under a certain modality by a
given entity at a given time. SAML thus does not deal with taking authentication
decisions; it only deals with encoding and transmitting such decisions. The goal of
our language is exactly to specify policies driving authentication decisions; as such
policies expressed in our language may also take into account previous authenti-
cation decisions, taken for example by other sites in a distributed system, together

388 A.C. Squicciarini et al.

with other information in order to reach an authentication decision.In what fol-
lows we refer to our framework as authentication service language, abbreviated as
Auth−SL. Our goal is to develop a comprehensive set of functions for specifying,
managing, enforcing, and inspecting authentication policies that can be used by
parties and applications in a system.

The contributions of our work are as follows: (1) The development of a ref-
erence architecture for a novel authentication service. (2) The specification of
a language to express authentication policies. The proposed language supports
the specification of the number of authentication factors required for accessing
a resource and the qualification of the authentication factors in terms of a large
variety of conditions. (3) An implementation of the proposed authentication ser-
vice and the policy language in the context of the FreeBSD Unix OS, which
allows continuous authentication. That is, the user can fluidly re-authenticate
users throughout sessions. Authentication policies can be associated with the
protected resources, in addition to being used when the user initially connects
to the system; our implementation thus supports the notion of continuous au-
thentication. Auth-SL, as our experiments show, is also very efficient; it improves
the functionality of the OS without impacting its performance.

We would like to emphasize that our approach departs from the conventional
security “pipeline” according to which, during a user session with a system, au-
thentication is executed only once at the beginning of the session, and then access
control is applied multiple times during the session. Our approach proposes a dif-
ferent paradigm under which the activities of authentication and access control
can be interleaved in a session, depending on the specific security requirements
of the resources accessed during the session. It is important to notice that the
conventional pipeline can be supported as a special case of our approach.

The rest of the paper is organized as follows. In Section 2 we present the
reference architecture for our authentication service. We then present the formal
definition of authentication language and discuss the implementation in FreeBSD
Unix. Finally we outline future work.

2 Reference Architecture for an Authentication Service

We begin with a reference architecture of our authentication service, to clarify
the main logical components. Auth-SL consists of two major subsystems, namely
the authoring subsystem and the enforcement subsystem.

Authoring subsystem. This system supports the specification and the man-
agement of the authentication policies. One of its key features is that it supports
the specification of which mechanism to use through the specification of condi-
tions against the features of the available mechanisms. Such specification relies
on two components: a library of authentication modules, very much like a set of
PAM modules [8]; and a specialized UDDI Registry recording all features of the
authentication modules that are relevant for the specification of the authentica-
tion policies. Each module in the library supports a specific type of authentication.

Auth-SL - A System for the Specification and Enforcement 389

Such modules can then be dynamically invoked to enforce the specific authentica-
tion policies. The information required about the authentication modules that are
needed for authoring authentication policies is as follows: (1) Module’s authentica-
tion characteristics. These data describe the settings for the specific mechanism.
For example, in a password based authentication, a characteristic is the maximum
number of tries allowed, or the minimum length of the password. For token-based
authentication, a characteristic is the authentication method (e.g. SSO, Basic-
Auth credentials), NTLM credentials (username, password, domain), and X.509
client certificates, and the software used (e.g. IBM Tivoli Client RSA). (2) Imple-
mentation data. These parameters qualify the specific implementation of a mech-
anism and can refer to the storage of the secret token, the cryptographic technique
used to transmit it, the audit trails and so forth.

The authentication policies that can be expressed thus depend on the au-
thentication modules available, and the characteristics of these modules. Such
data are to be considered part of the knowledge needed to specify adequate
authentication policies. For example, if a system administrator knows that a
given authentication module is weak, due to implementation limits or module
vulnerabilities, he can apply stronger authentication policies. Authored authen-
tication policies are stored into a repository referred to as Authentication Policy
Base providing query capabilities to properly authorized users, such as system
administrators and auditors.

Enforcement subsystem. Upon an authentication request, such system is in
charge of evaluating an authentication policy and make an authentication deci-
sion. The evaluation is executed by the Authentication Enforcement Point, which
first retrieves a proper authentication policy. Policy evaluation may also take into
account previous authentication events concerning the subject being authenti-
cated. To express fine grained constraints over past authentications we collect
information on the past authentication in two different logs, serving different
purposes: (i) track subjects actions related to authentication and (ii) record the
conditions under which a successful authentication is executed. In the first log,
referred to as Authentication event log, we record authentication events (event
for short) related to the subjects. An authentication event is basically an au-
thentication executed against a subject. Such log tracks in a chronological order
all events related with authentication of the users performed during each session.
Once the policy is evaluated, a new event is generated and stored in the log in
order to keep track of this authentication step. Each record can refer to either
an authentication attempt using a specific factor, the verification and/or the
failure of the verification of a given factor. A successful authentication implies
successful authentication of multiple factors traced in the event log.

The context data log instead tracks specific data related to previous authenti-
cation. The information stored by such log is used to evaluate whether previously
executed authentication can be leveraged for satisfying an authentication policy
An instance of the context data log is created when the user begins a session
and it is maintained only for the session duration. Each log record stores con-
text data related to the specific authentication performed, and the settings of the

390 A.C. Squicciarini et al.

module used. In the current Auth-SL system, each entry in a context data log
collects: the type of mechanism used, the time of the authentication execution,
the number of failed attempts, the party that originally generated the authen-
tication token used, storage information (remote versus local token storage)and
the storage mode (encrypted versus clear text token). Note that Auth-SL does
not mandate the specific set of data to be tracked. Additional data may be saved,
according to the specific system modules and system security requirements.

The output of the enforcement subsystem is an authentication assertion, which
can be returned either to the user or transmitted to some other system or appli-
cation. Since policies are associated with resources, in most cases the authentica-
tion service will interact with the access control system. Typically when subject
requires access to a resource, the access control system will will require the au-
thentication service to determine if there are authentication policies associated
with the resource and, if this is the case, to evaluate such policies.

3 The Policy Language

In this section we discuss the language for the specification of authentication
policies. We begin introducing some notation and symbols to be used for the
policy specification and then illustrate the syntax of the language.

3.1 Constant Symbols

The constant symbols used in our language are described as follows.

Objects (O) denotes the set of objects available in the system. Each object has
an associated set of operations according to which the object can be accessed.
We denote the possible set of operations for object o in O as OPo

1.
Authentications Modules (AM) is a set of authentication modules available

in the system library. We assume that modules are described in terms of param-
eters collected in a set ModP. Each module m ∈ AM has an associated profile,
defined by a subset {varm

1 , . . . , varm
k } of elements in ModP. In particular, each

profile always includes a mechanism type name (denoted as MechType), specify-
ing the type of mechanism supported by the module. Some mechanisms are also
qualified in terms of the algorithm used for authentication, as for instance the
cryptographic algorithm or the algorithm used for biometric authentication.

Policy constraints (P) is a set of policies used to establish authentication
requirements for elements in O. We assume that for each o ∈ O there is at most
a policy p ∈ P . Policies are defined as combination of authentication factors (F),
to qualify the authentication to be executed.

Time (T) is the discrete time in the system.

3.2 Formal Definitions

Authentication policies are the key elements to drive authentication decisions.
The specification of authentication policies relies on the notion of Authentication
1 The set of resources contains at least the object corresponding to the user login.

Auth-SL - A System for the Specification and Enforcement 391

Factor. Authentication factors define the features of a specific authentication,
using one specific mechanism in AM, and are described in terms of descrip-
tors. Each descriptor has at least one parameter, which is the alias -or unique
identifier- of the authentication factor.

Definition 1 (Descriptor). A descriptor d is a predicate of the form p(x, t),
in which x is a variable, and t is a vector of one or more terms2.

Descriptors can be classified into four different categories, according to the spe-
cific property they capture.

† Authentication Verifier descriptors. These descriptors state properties of the
verifier of the authentication token. This could be related to the trusted third
party that originated the secret token, or to the module that at the time of
verification of the identity token checks its integrity.

† Module Characteristics. These properties describe the characteristics of the
module used for the authentication and the configuration used to run
authentication.

† Context Information. These properties refer to external conditions that may
arise during a specific authentication.

† Space and time. These descriptors attest properties of the authentication
factors with respect to space and time constraints.

Properties of a specific authentication could potentially be described in various
ways. In Auth-SL, we chose to represent them through a finite set of descriptors
to enable specification of fine grained authentication policies. Relevant descriptors
necessary to express articulated policy conditions are provided in [17]. Authenti-
cation factors are specified through a Boolean conjunction of descriptors.

Definition 2 (Authentication factor). An authentication factor is a Boolean
conjunction of descriptors d1, . . . , dk, each of the form d = p(x, t), such that: (1)
The same factor variable x appears in every descriptor dm = p(x, t) ∀m ∈ [1, k]
(2) ∃dj , j ∈ [1, k] such that pj(x, a) = Mechanism(x, a), a ∈ MechType.

We describe a factor in terms of the descriptors {d1, . . . , dk} composing it, when
the exact arguments of the descriptors are not needed. As from Definition 2, au-
thentication factors can be defined using any possible combination of descriptors.
The only mandatory descriptor is the one specifying the mechanism to use.

Example 1. Examples of authentication factors are the following:

1) Mechanism(z2, Biometric) ∧ Algorithm(z2, V eriF inger) ∧ T imeBefore
(z2, t

′′),
2) Mechanism(z1, Kerberos) ∧ T imeBefore(z1, t)

The authentication factors, as defined, are stand alone in that the specification
of one single factor is not related to any other factor. However, this is not ade-
quate for the specification of complex and multi-factor authentication policies.
2 Recall that a term is either a variable like cid or it is a compound term f(t1, . . . , tk)

where f is a function symbol of arity k and t1, . . . , tk are smaller terms.

392 A.C. Squicciarini et al.

To correlate different factors and their characteristics specific constraints can be
specified. Factor constraints are specified as logic formulae in which the occur-
ring variables are the factor identifiers. We assume the existential and universal
formula be specified always over attributes having a finite domain. The domain
of constraints supported belongs to the class of order and inequality constraint
domain [10]. This domain include binary predicates as defined in our comparison
assertions set presented in Section 3.1.

Definition 3 (Factor Constraints). Let d1, . . . , dk be authentication descrip-
tors specified according to Definition 1. A factor constraint φ for descriptors
d1, . . . , dk is a first order logic formula defined expressing conditions against
variables appearing in {d1, . . . , dk}.

Example 2. Let d1, d2 be two different authentication descriptors. An example
of constraints are:

φ1 =∃(TrustedParty(x1, value1)∧TrustedParty(x2, value2))∧value1 �= value2
φ2 = ∃(T imeBefore(z1, t

′′)) ∧ T imeBefore(z2, t
′)) ∧ t′ > t′′

The first constraint requires that the two factors be issued by different trusted
parties. This is useful to impose authentication to be proved trough credentials
issued by different authorities. The second constraint implies an ordering in the
execution of the factors and requires factor d1 to be executed after d2.

We are now in the position to formalize the notion of authentication policy.

Definition 4 (Authentication Policy). An authentication policy p is a tuple
of the form 〈obj, op, [d1, . . . , dk], T s, Φ〉, k ≥ 1, where:

– obj ∈ O is the object target of the policy;
– op ∈ OPobj denotes a non-empty set {op1, . . . , opk} of operations according

to which obj is to be accessed.
– [d1, . . . , dk] is a list of authentication factors, such that dj �= dm if j �= m;
– Ts denotes the number of mandatory authentication factors to be verified,

thus 1 ≤ Ts ≤ k;
– Φ is a set of factor constraints {φ1, . . . , φk}; each φi, i ∈ [1, k] , is specified

in terms of descriptors appearing in d1, ..., dk.

An authentication policy is by definition specified by a combination of factors to
be evaluated. The execution of all the factors may or may not all be mandatory,
as specified by threshold value, denoted by Ts. The specification of Ts enhances
the flexibility of authentication by establishing the sufficient demands needed to
authenticate the user. The listed factors are to be evaluated accordingly.

Example 3. The following is an example of authentication policy:

p = 〈file1, {open}, [f1, f2], 2, φ2〉 states that to be authenticated for opening
file1 the user identity should be checked by executing both factors f1 and f2.
Here, f1 and f2 correspond to the factors in Example 1 and φ2 denotes the
constraint of Example 2.

Auth-SL - A System for the Specification and Enforcement 393

To avoid specification of policies which cannot be processed by the policy en-
forcement point, authentication policies should be well-formed.

Definition 5 (Well-formed policy). Let obj be a object, op be the associated
operation and let p=〈obj, op, [d1, . . . , dk], j, Φ〉, k ≥ 1, be an authentication policy.
p is a well-formed policy for obj if the following condition holds: Ts = j, j ≤ k
and a set of j factors dm1, . . . , dmj exists in [d1, . . . , dk] such that each φ ∈ Φ
that involves factor variables in dk1, . . . , dkj is satisfiable.

By definition, satisfiability of the constraints needs to be guaranteed. Also con-
straints expressed in terms of factor variables referring to factors that are not
part of the subset need to be satisfiable. That is, if they refer to factors that are
not part of the list, the policy is not well formed. We clarify this concept with a
simple example.

Example 4. Consider a policy that specifies [f1, f2, f3] and requires at least 2
out of 3 factors to be verified. If among the constraints in Φ there is a constraint
φ1 that compares qualities of the factor f1 with qualities of factor f2 and there
is a second constraint φ2 that compares qualities of f2 with qualities of f3, then
the policy is not well-formed. The constraints can only be evaluated if all the 3
factors are verified, and this contradicts the threshold value.

Verifying whether a policy is well-formed or not is a decidable and deterministic
problem, as a consequence of the fact that the set of factors and constraints is
always finite and of the adopted constraint language.

4 Implementation of the Authentication Service in
FreeBSD Unix

As part of our work, we have developed a prototype of the authentication ser-
vice in the context of the FreeBSD Unix OS[9]. The main components identi-
fied in the framework reported in Section 2 have been translated into modified
modules/operations for implementation in FreeBSD. A sketch of the resulting
prototype architecture is presented in Figure 1. The core of the system, which
is represented by the authentication enforcement point, has been implemented
trough a set of APIs, for policy access and context access. We elaborate on those
components as well as on the above issues in what follows and we also report
some performance results.

Policy Encoding. Each object in the OS is associated with one authentication
policy, composed by one or more authentication factors. In order to support an
efficient processing of policies, we provide an internal representation of policies
expressed according to the C language. Auth-SL policies are encoded using XML
and then parsed into C functions by an authoring tool. Each policy function is
associated with a unique ID. Policy functions are parameterized with actual con-
straint values that appear in the policy factors. The C functions, which evaluate
the logic of a particular policy, take as input parameters the context data log and
the parameter values that qualify the arguments of the descriptors for factor.

394 A.C. Squicciarini et al.

Fig. 1. Prototype architecture Fig. 2. Auth-SL authentication services

Policy Storage and Binding. The storage strategy adopted for the policies
is a key element for ensuring good performance and effective management of
the policies. We exploit the extended attributes stored in the Extended file
Attributes (EA) of the inode for policy storage. As shown in Figure 1, the
inode is connected with the resource and the set of API used for policy ac-
cess. EAs are included as part of the UNIX File System Version 2 (UFS2) for
FreeBSD. The extended file attributes provide a mechanism for supporting the
association of various metadata with files and directories; such metadata are
not directly used by the file system (unlike other attributes such as the owner,
permissions, size, and creation/modification times) [14]; rather they are meant
to be used by programs for associating attributes with files. However, due to the
limited amount of space available in EA, the whole policy structure cannot be
stored. Moreover, policy functions cannot be stored along with the objects, as
no executable code can be stored at the inodes. Thus, we store the policies in
a central repository and refer them from the EA through a unique id, referred
to as policyID. We also use the EA to store the constraints for evaluating the
policy identified by policyID.

PAM module extension. PAM presents a common solution for organizing
multiple authentication mechanisms into a single, high-level API for authenti-
cation programs. These programs, which are usually system entry applications,
like login or sshd, can use the PAM API to authenticate a user while hiding the
details of the underlying authentication mechanism used. The PAM library con-
sists of several modules, each implementing a particular authentication scheme.
A system administrator uses a set of configuration files in /etc/pam.d/ to asso-
ciate each system entry application with one or more PAM [9]. Although well
designed, PAM modules cannot be used as they are in the Auth-SL system.
This follows from the fact that our system relies on controlling not only which
authentication mechanism is to be used, but also its parameters. We thus cre-
ated an authentication context object storing: type of mechanism, time of
authentication, number of authentication tries, threshold, TTP, storage location
(local or remote), and storage mode (encrypted, plain text, etc.). We extended

Auth-SL - A System for the Specification and Enforcement 395

pam unix module by adding code to store the authentication context object.
Thus we are able to retrieve, control, and record module-specific data during
every authentication attempt. The problem of continuous authentication is ad-
dressed by creating a set of configuration files, each of which specifies the PAM
module that provides a particular type of authentication service. The name of
each configuration file reflects the underlying authentication mechanism.

Policy enforcement and continuous authentication. Enforcement of an
authentication policy is a multi-step activity, illustrated in Figure 1. As shown,
the authentication enforcement point is invoked by kernel file access calls, which
have been connected with the Unix system entry applications through a library
of APIs for context access. Specifically, policy enforcement is as follows. The
authentication activity is initiated when a user initially logs in as a subject (ac-
tually a process) and then attempts to perform an operation, such as open, read,
write, on an object o, such as a file, device, process, or socket. The operation
as part of its execution requires the Authentication Enforcement Point (AEP)
to perform an authentication enforcement operation. The AEP gathers the au-
thentication context c (from the context log stored in the ucred struct) of the
subject and the policy identifier along with the parameter values stored within
the extended file attributes associated with the object o being requested. This
is achieved by calling the function authGetPolicy fd(), which returns the policy
identifier, by function authGetPolicy Const() which returns the constraints to be
passed for the policy evaluation and by the extractAuthCotext() function. Once
these data are gathered, the function ContextSatisfies(), which is the core of
the enforcement activity, attempts to match the authentication context logged
with the authentication factors required by the authentication policy. The policy
identifier is passed as input to the function to select the policy to be enforced.

Performance evaluation. We have conducted several experiments to evaluate
the performance of our solution.The testswere carried out on a Intel(R)Xeon(TM)
2.80GHz CPU with 1 GB of RAM. The performance of the prototype has been
measured in terms of CPU time (in milliseconds). We present the results of the
evaluation of the policies. Due to lack of space we report only some of the experi-
mental results. Our testing consisted of timing the execution of policy functions to
determine whether the factors have been verified or not, by looking into the con-
text data log. For the experiments, we considered three simple policies: the first
with one a single factor; the second with two factors and zero constraints; and the
third with two factors and one constraint binding the two factors. Each policy is
composed of two factor assertions, and refers to a password authentication mech-
anism. The results show that our implementation does not introduce significant
latency (as by Figure 2). When policies are not satisfied, the time needed for the
open command to complete is significantly reduced. This follows from the fact that
the authentication check is performed prior to the application of any access control.
If the required authentication factors are not satisfied, the open process terminates
quickly. Hence, it is clear that the evaluation of our authentication policies do not
significantly burden the system.

396 A.C. Squicciarini et al.

5 Related Work

Quality of authentication has been explored as authentication confidence by
Ganger et al. [6]. In this approach the system remembers its confidence in each
authenticated principals identity. Authorization decisions explicitly consider both
the “authenticated” identity and the system confidence in that authentication.
The categorization of the authentication type is based on either the possession of
secrets or tokens, e.g. passwords or smartcards, or on user specific characteristics
like biometrics. Such an approach however does not support a fine granular quality
of authentication. We instead provide an expressive policy language supporting
quality of authentication. We also provide a reference architecture for authenti-
cation services and have implemented a version of it. Our approach is thus more
comprehensive and provides a fine granularity control over authentication.

Authentication policies have also been implemented in WebSphere [13] as a
part of a flexible set of authentication protocols. These authentication protocols
are required to determine the level of security and the type of authentication,
which occur between any given client and server for each request. Compared
to Websphere policies, our authentication policies are more expressive and have
more efficient evaluation as they are enforced at the kernel level.

Our work has some relationship with existing work on authentication log-
ics [1, 2, 15]. For lack of space we limit our discussion to the seminal paper by
Abadi et, al. [15], which has goals close to ours. The authors propose a logic based
authentication language which has been implemented in the Taos OS. A key no-
tion is such approach is the notion of identity that includes simple principals,
credentials and secure channels. The authentication system allows a weak form
of continuous authentication through the “speaks-for” notion, that in practice
represents subsumption among principals, and the use of authentication cache.
By contrast Auth-SL supports the specification of fine-grained authentication re-
quirements that are independent from principals. Besides simple subsumption of
principals, Auth-SL supports true multi-factor authentication, enforced through
a combination of authentication factors. In addition Auth-SL supports the spec-
ification of freshness requirements. Expressing our authentication mechanism in
terms of authentication logics could yield to a limited characterization of Auth-
SL, which would exclude interesting features such as fine grained conditions
against factors and support of temporal constraints. We will further investigate
possible extensions of Auth-SL with ideas from the work on authentication logics.

Operating systems define various policies for access control. In particular Se-
curity Enhanced Linux [5] (also known as SELinux) provides an expressive policy
language which can be used for defining authentication policies. Differently from
SELinux, provide a simple syntax which is expressive to describe the various
types of authentications and the requirements. Our policies are translated to C
functions which are executed at the time of the authentication check. Thus, as
compared to SELinux policies, our policies are much simpler to define. Moreover,
since our policies are finally encoded as C functions which are pointed to by file
objects, we do not require a centralized policy enforcement as in SELinux.

Auth-SL - A System for the Specification and Enforcement 397

6 Future Work

We plan to extend this work in various directions. The first direction concerns
the specification of when the authentication has to be executed; such as when
specific events occur, or at periodic time intervals. A second direction concerns
the possibility of specifying different authentication policies for different users of
the system; this extension would also require an additional component for the
policy language and mechanisms for associating policies with users. Finally we
plan to implement an authentication service for use by applications and federated
digital identity management systems.

References

1. Abadi, M., Burrows, M., Lampson, B.W., Plotkin, G.D.: A calculus for access
control in distributed systems. ACM Trans. Program. Lang. Syst. 15(4), 706–734
(1993)

2. Abadi, M., Thau Loo, B.: Towards a declarative language and system for secure
networking. In: NetDB 2007. Proceedings of the Third International Workshop on
Networking Meets Databases, Cambridge, MA, USA (2007)

3. de Alfaro, L., Manna, Z.: Continuous verification by discrete reasoning. Technical
Report CS-TR-94-1524 (1994)

4. v. 1.0 Extensible Markup Language (XML). W3c recommendation, 2006,
http://www.w3.org/XML/

5. SELinux for Distributions, http://selinux.sourceforge.net/
6. Ganger, G.R.: Authentication confidences, pp. 169–169 (2001)
7. Klosterman, A., Ganger, G.: Secure continuous biometric-enhanced authentication

(2000)
8. Pluggable Authentication Modules, www.sun.com/software/solaris/pam/
9. FreeBSD Project. Freebsd home page, http://www.freebsd.org

10. Revesz, P.Z.: Constraint databases: A survey. In: Semantics in Databases, pp.
209–246 (1995)

11. SAML. v. 1.0 specification set (2002),
http://www.oasis-open.org/committees/security/#documents

12. RSA SecureId, http://www.rsasecurity.com/node.asp?id=1156
13. IBM WebSphere Software, www-306.ibm.com/software/websphere/
14. Watson, R.N.M.: Trustedbsd adding trusted operating system features to freebsd.

In: USENIX Annual Technical Conference (2001), http://www.usenix.org
15. Wobber, E., Abadi, M., Burrows, M., Lampson, B.: Authentication in the taos

operating system. ACM Trans. Comput. Syst. 12(1), 3–32 (1994)
16. Yang, G., Wong, D.S., Wang, H., Deng, X.: Formal analysis and systematic con-

struction of two-factor authentication scheme (short paper). In: Ning, P., Qing, S.,
Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, Springer, Heidelberg (2006)

17. Bertino, E., Bhargav-Spantzel, A., Squicciarini, A.C.: Policy languages for digital
identity management in federation systems. In: POLICY 2006. Proceedings of
Workshop on Policies for Distributed Systems and Networks, pp. 54–66 (2006)

http://www.w3.org/XML/
http://selinux.sourceforge.net/
www.sun.com/software/solaris/pam/
http://www.freebsd.org
http://www.oasis-open.org/committees/security/#documents
http://www.rsasecurity.com/node.asp?id=1156
www-306.ibm.com/software/websphere/
http://www.usenix.org

	Auth-SL - A System for the Specification and Enforcement of Quality-Based Authentication Policies
	Introduction
	Reference Architecture for an Authentication Service
	The Policy Language
	Constant Symbols
	Formal Definitions

	Implementation of the Authentication Service in FreeBSD Unix
	Related Work
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

