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ABSTRACT

Cross-Site Request Forgery (CSRF) attacks are one of the top

threats on the web today. These attacks exploit ambient author-

ity in browsers (e.g., cookies, HTTP authentication state), turning

them into confused deputies and causing undesired side effects on

vulnerable web sites. Existing defenses against CSRFs fall short in

their coverage and/or ease of deployment. In this paper, we present

a browser/server solution, Allowed Referrer Lists (ARLs), that ad-

dresses the root cause of CSRFs and removes ambient authority for

participating web sites that want to be resilient to CSRF attacks.

Our solution is easy for web sites to adopt and does not affect any

functionality on non-participating sites. We have implemented our

design in Firefox and have evaluated it with real-world sites. We

found that ARLs successfully block CSRF attacks, are simpler to

implement than existing defenses, and do not significantly impact

browser performance.
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D.m [Software]: Miscellaneous
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Security, Design
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1. INTRODUCTION
Web application developers have relied on web cookies to not

only provide simple state management across HTTP requests, but

also to be bearers of authentication and authorization state. This

programming paradigm, combined with the fact that web browsers

send cookies by default with every HTTP request, has led to the

proliferation of ambient authority, whereby HTTP requests can be

automatically authenticated and authorized with the transport of a

cookie. Other sources of ambient authority include state in HTTP

authentication headers, client-side TLS certificates, and even IP ad-

dresses (which are used for authorization in some intranets or home

networks). Such ambient authority, in turn, has led to the prolifera-

tion of Cross-Site Request Forgery (CSRF) attacks.

CSRF attacks occur when malicious web sites cause a user’s

web browser to make unsolicited (or forged) requests to a legiti-

mate site on the user’s behalf. Browsers act as confused deputies
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and attach any existing cookies (or other ambient authority state)

to the forged request to the victim site. If the web application

looks at the cookie or other state attached to an HTTP request as

an indication of authorization, the application may be tricked into

performing an unwanted action. For example, when a user vis-

its bad.com, the displayed page may force the browser to make

requests to bank.com/transfer-funds (e.g., by including an image).

When making the request to bank.com, the user’s browser will at-

tach any cookies it has stored for bank.com. If bank.com verifies

the request only via the attached cookies, it may erroneously exe-

cute the attacker’s bidding.

CSRF attacks are a major concern for the web. In 2008, Zeller

et al. [39] demonstrated how several prominent web sites were vul-

nerable to CSRF attacks that allowed an attacker to transfer money

from bank accounts, harvest email addresses, violate user privacy,

and compromise accounts. From January 1 to November 16 in

2012, 153 CSRF attacks have been reported, making 2012 one

of the most CSRF-active years [26]. These vulnerabilities are not

merely theoretical; they have a history of being actively exploited

in the wild [3, 31].

CSRF defenses exist, and some may believe that defending

against CSRF attacks is a solved problem. For example, tokeniza-

tion is a well-known approach adopted in various forms in numer-

ous web development frameworks. In a tokenization-based de-

fense, a web server associates a secret token with HTTP requests

that are allowed to cause side-effects on the backend. Assuming an

attacker site cannot capture this token, the attacker cannot launch

CSRF. However, our in-depth analysis (Section 3.1.1) reveals that

tokenization has a number of practical drawbacks, such as lack of

protection for GET requests, possible token extraction by adver-

saries, and challenges dealing with third-party web development

components. We show that other defenses are also limited: ei-

ther too rigid (thereby blocking legitimate content) or too yielding

(thereby allowing certain attacks to occur).

By studying drawbacks in existing approaches, we set out to

build a new CSRF defense that is (1) developer-friendly, (2) back-

ward compatible (not blocking legitimate content), and (3) has

complete coverage (defending against all CSRF attack vectors).

We propose a new mechanism called Allowed Referrer Lists (ARLs)

that allows browsers to withhold sending ambient authority creden-

tials for web sites wishing to be resilient against CSRF attacks. We

let participating sites specify their authorization structure through a

whitelist of referrer URLs for which browsers are allowed to attach

authorization credentials to HTTP requests.

This approach takes advantage of the fact that browsers know

the browsing context, while web developers understand the

application-specific authorization semantics. By letting browsers

carry out the enforcement and having web developers only spec-

ify the policies, we ease the enforcement burden on developers.



Figure 1: Example of a server bank.com setting a cookie. The cookie

name is “UID” with a value of 11Ap4P765U2da. The cookie will be

sent by the browser with every request to *.foo.com/* (“domain” and

“path”), but only over HTTPS (“secure”). The cookie cannot be read

or set from JavaScript (“HttpOnly”), and will expire on 13-Jan-2021.

By only having participating sites specify the policies and receive

CSRF protection from browsers, we leave other web sites’ behavior

unchanged, thus providing backward compatibility.

We have implemented ARLs in the Firefox browser. To evalu-

ate ARLs, we studied four open-source web applications for which

source code was available and for which the CSRF attacks were

reported via the public vulnerability e-mail list “full-disclosure”.

We analyzed each application and reproduced the reported CSRF

attacks. We then developed ARLs for each application and showed

that the attacks were no longer possible. We also compared the

amount of effort needed to implement CSRF protection using

ARLs versus a traditional tokenization patch, finding ARLs to be

the easier solution and one that provides better coverage.

We also studied how ARLs could be deployed on three large,

real-world sites: Gmail, Facebook, and Woot. We found that most

features offered by these sites could be supported with ARLs with

very few modifications. We also considered ARL compatibility for

complicated real-world web constructs such as as nested iframes,

multiple redirections, and federation identity protocols.

We summarize our contributions of this paper as follows: (1) we

give an in-depth analysis of existing CSRF defenses and analyze

their limitations. (2) we propose, implement, and evaluate a new

browser mechanism for not sending ambient authorization state for

participating sites based on their policies.

In Section 2 we give a background of authentication on the web

and how ambient authority leads to CSRF attacks. In Section 3, we

conduct an in-depth analysis of existing CSRF defenses and their

drawbacks. We present the ARL design in Section 4 and describe

our browser implementation in Section 5. In Section 6, we eval-

uate ARLs against real CSRF attacks on open-source applications

and discuss how ARLs would fare on real-world sites. We discuss

privacy and limitations in Section 7, and we conclude in Section 8.

2. BACKGROUND
E-commerce web sites, webmail services, and many other web

applications require the browser and server to maintain state about

user sessions. Today, the de facto method of doing so is through

HTTP Cookies, which are simply key/value pairs that a server can

pass to and retrieve from the user’s browser. A server “sets” a

cookie by adding a Set-Cookie HTTP header to an HTTP re-

sponse. By default, the browser stores the cookie for the current

browsing session and uses the Cookie header to attach it to any

subsequent HTTP requests it makes to the same web domain. The

server may add attributes in the Set-Cookie header to change

how the browser should handle the cookie. For example, the server

can set a cookie’s expiration date with the “Expires” attribute (mak-

ing the cookie persistent), restrict the cookie to be sent only over

HTTPS with the “Secure” attribute, and disallow JavaScript access

to the cookie with the “HttpOnly” attribute. Additionally, the server

may limit the cookie’s scope to particular sub-domains and/or URL

Figure 2: An example CSRF attack. When the user visits the ad-

versary’s page, the HTTP reply (step 2) includes code that causes the

user’s browser to make a request to bank.com (and attach bank.com’s

cookie). Bank.com erroneously treats this request as legitimate since it

has the user’s cookie.

paths via the “Domain” and “Path” attributes. Figure 2 shows an

example of how a server sets a cookie.
Web servers use cookies to store a variety of client-side state. For

example, to tie HTTP requests to users, many servers store the user

ID or session ID in a cookie. Some web applications also reduce

load on their backend servers by using cookies to store frequently

queried values, such as language preferences or UI settings.

Cross-Site Request Forgery. As mentioned above, cookies are of-

ten used for authentication — as bearers of user identity. Many web

applications, however, mistakenly use the same cookie not only for

authentication, but also for authorization. Specifically, many sites

assume that an HTTP request bearing the user’s cookie must have

been initiated by the user. Unfortunately, this is not necessarily true

in today’s web. In fact, if the user visits an attacker’s web page, the

attacker can cause the user’s browser to make HTTP requests to any

web origin. This attack is known as Cross-Site Request Forgery

(CSRF). An example of this attack is shown in Figure 2.

2.1 Cause of CSRFs: Ambient Authority
The root cause of CSRFs is the prevalence of ambient authority

on today’s web. Ambient authority means that web sites rely on

data automatically sent by browsers as an indication of authority

and thereby legitimate user intent. While cookie misuse is the most

widespread cause of ambient authority and CSRF attacks, there are

a number of lesser-known means by which CSRF can happen:

• HTTP Authentication: Some web sites use HTTP Authen-

tication [6] to authenticate users. Browsers prompt the user

for a username/password and send the user-supplied credentials

in an “Authorization” HTTP header. The browser then caches

these credentials and resends them whenever the server requests

them. Note that authentication data is being sent in an autho-

rization header — both confusing and misleading. Attackers

may create CSRFs by causing the user’s browser to send re-

quests to an origin with cached HTTP Authentication creden-

tials. A separate “Proxy-Authorization” header similarly au-

thenticates users to proxies, with similar implications for CSRF.

More advanced techniques such as NTLM [24] exist for veri-

fying authenticated clients, but they eventually cause similar

tokens to be sent in an HTTP header.

• Source IP Address: A corporation may grant access to intranet

sites based on a client’s source IP. For example, employees

may request vacation days, add dependents, or divert parts of

their paycheck towards a charitable organization through the

intranet. When visiting an attacker’s site, a user’s browser may

be instructed to connect to an intranet IP address with poten-

tially malicious consequences.

• Client-Side TLS Certificates: The TLS protocol has support

for both TLS server and (less popular) TLS client certificates.

Client certificates can encode the user identity and, just like

cookies, be used to identify a user. Unlike cookies or HTTP



Authentication, TLS client certificates are not sent with every

request. Instead, they are used to initially establish an authen-

ticated TLS session. A web application will then consider any

data sent through the authenticated TLS session as belonging

to the respective user. However, if a site uses TLS client cer-

tificates for authorization (rather than purely authentication),

the site may be vulnerable to CSRFs, since attackers can cause

browsers to send requests over authenticated TLS sessions.

In each of the above scenarios, a web application relies on a

single “token” (IP address, cookie, HTTP header, or client certifi-

cate) as an indication of authorization. We call these tokens bearer

tokens. Because most of today’s web sites implement authoriza-

tion based on cookies, the majority of known CSRF attacks are

cookie-based. Nevertheless, other types of attacks have been ob-

served in the wild. For example, “router pharming” attacks [34] use

JavaScript in the user’s browser to change DNS settings in home

routers, many of which use Basic Authentication or source IP for

user authorization.

3. RELATED WORK
We now describe existing anti-CSRF defenses and explain how

they fall short of a comprehensive solution. We dive deep into how

current solutions are designed, deployed, and used across the web,

looking at both currently deployed defenses and those that have

been proposed but not yet adopted. CSRF defenses come in three

flavors: server-side, client-side, and server/client hybrids; we will

discuss each in turn. We view the synthesis and systematization

below as a contribution of independent interest.

3.1 Server-side Approaches
Server-side solutions rely solely on server logic for CSRF pro-

tection. They are currently the most popular type of CSRF defense.

3.1.1 Tokenization

The current best practice for CSRF protection involves the use

of a secret token. This approach works as follows:

1. When the user loads a page from the web application, the

web server generates a secret token (a string) and includes it

in the body of the web page.

2. As the user interacts with the web page and causes state-

changing requests to be issued back to the web server, those

requests include the secret token.

3. The web server then verifies the existence and correctness of

the token received in the request before continuing execution.

Note that the secret token is not sent automatically by the

browser (as is the case with cookies). Instead, the secret token is

stored in the web page’s DOM, and the page attaches it to requests

programmatically via scripts or HTML forms. The security of this

approach stems from the token being tied to the user’s current ses-

sion and being random enough to not be guessable by an attacker.

Implementing anti-CSRF tokenization involves three steps: (1)

limit all “unsafe” operations to POST requests (as per RFC

2616 [13]), (2) include tokens in all HTML forms and AJAX re-

quests that issue POSTs back to the server, and (3) verify the ex-

istence of the correct CSRF token when processing POST requests

at the server.

Traditionally, developers implemented tokenization in a

painstakingly manual manner. A developer would write code to

generate and validate tokens and then find and secure each part of

the application that generates or handles POST requests. To sim-

plify this daunting process, several CSRF protection frameworks

have been developed (e.g., CSRF Guard [27, 28]). Most frame-

works automate POST request tokenization by rewriting HTML

forms and adding token information to AJAX queries. Although

these frameworks exist, many web applications still implement

CSRF protection manually; this appears to be especially true for ap-

plications written using older web platforms, such as PHP or Perl.

More recent web development platforms (e.g., Ruby on Rails,

ASP.NET, and Django) include token-based CSRF protection as

part of the standard development platform package. In some cases,

CSRF protection is enabled for all pages; in others, developers must

mark specific classes, controllers, views, or other platform compo-

nents as requiring CSRF protection. In these cases, the web plat-

form issues CSRF tokens when creating HTML output and vali-

dates the tokens when processing POST data submissions.

While CSRF frameworks and integrated tokenization in web

platforms have simplified tokenization’s deployment, we argue that

tokenization is an incomplete defense having many drawbacks:

Incompatible with GET requests. Tokens must not be sent over

GET requests since GET requests may be logged by proxies or

other services, or may be posted on the web by users, thus leaking

the token. One may think that this problem does not arise in prac-

tice, as RFC 2616 specifically designates GET as a safe and idem-

potent method, which would make tokens unnecessary for GETs.

However, real web applications don’t follow this paradigm. For ex-

ample, we investigated several popular web sites and found that (as

of late 2012) Google, Amazon, live.com, and PayPal all use GET

URLs to log users out. This is clearly not an idempotent action and,

because none of the four web applications use CSRF protection for

the logout action, an attacker can terminate a user’s session with

any of these applications without user consent. As another exam-

ple, we found that Flickr.com (as of early 2012) uses GET requests

for actions like changing the display language. Flickr does protect

these requests with a CSRF token (sent as a URL parameter), but

unfortunately uses the same token for POST requests as well. Be-

cause a Flickr user’s token is the same from session to session, to-

ken leakage over a GET request could lead to more serious CSRF

attacks that target POST APIs. Tokens may leak because URLs

for GET requests may be stored in the browser history, server and

proxy log files, bookmarks, etc. Attackers may then use techniques

such as browser history sniffing to discover CSRF tokens [15].

Potentially extractable. In some situations, attackers may be able

to extract CSRF tokens directly. For example, attackers could con-

vince users to drag content that includes tokens from one web frame

(the victim) to another (the attackers), or to copy-and-paste the

token into the attacker’s frame [18]. Attackers have used these

techniques to trick Facebook users into exposing their CSRF to-

kens [40]. Researchers have also shown that many web sites are

vulnerable to CSRF token extraction through a variety of HTML
and script injection attacks [38, 9]. Recent work shows how CSRF

tokens may be extracted using only cleverly formed CSS [14].

Error-prone manual implementation. Tokenization has many

“moving parts”, and custom implementations may thus be quite

prone to errors. For example, a developer can easily overlook an

important location where tokenization is needed and leave the ap-

plication open to CSRFs. On the other hand, if the developer is

overzealous with tokenization, tokens can leak; this is particularly

bad if tokens are not ephemeral (like with Flickr) or made easily

reversible to a session ID as suggested by some tutorials [12].

Frameworks confuse developers. On the other end of the spec-

trum, developers using a CSRF protection framework may mis-

use it, or they may falsely believe that it protects them from all

types of CSRF attacks. For example, some frameworks do not to-

kenize AJAX requests [11, 7]. Other frameworks may only rewrite

forms generated using web platform calls, leaving forms written

using raw HTML unprotected. As another example, without under-



standing how CSRF frameworks work, developers can accidentally

cause cross-domain POSTs to send a CSRF token to an untrusted

third party. Finally, it’s possible for developers to unwittingly ac-

cept GET requests while thinking the data came from POSTs —

popular libraries such as Perl’s CGI.PM module allow a developer

to fetch a parameter without caring if it came in via a GET or POST

request. Thus, POST requests could be converted to GET by the at-

tacker, and the application action will still be performed [2].

Poor third-party subcomponent support. Many modern web de-
velopment platforms (such as Drupal, Django, and Ruby on Rails)

allow developers to use third-party components or plug-ins for

added functionality. By integrating a poorly written component,

developers might introduce a CSRF into their application. In such

cases, it may be difficult to check whether a component correctly

protects all actions, especially if it has a large code base [32].

Language dependence. For large, complicated web applications

(such as large e-commerce sites) each part of the page may be gen-

erated using a different programming language. CSRF token gen-

eration and verification may need to be implemented separately by

every one of those components.

3.1.2 Origin Checking

Besides tokenization, web application developers may use the

proposed Origin HTTP header [4, 37], a privacy-preserving re-

placement for the Referer header. Like its predecessor, the Ori-

gin header is used by browsers to convey the originating domain of

a request to the server. Web application developers can use that in-

formation to decide whether a request originated from a web origin

the application trusts and hence is a legitimate request. For exam-

ple, bank.com may trust broker.com and treat any request having

an Origin header value of broker.com or bank.com as a valid state-

modifying request, and treat all other requests as untrusted. As of

late 2012, the Origin header is supported in Chrome and Safari.

In practice, the Origin header has restrictions that complicate and

impede the ability of developers to use it as an anti-CSRF mecha-

nism. Next, we discuss two such challenges.

No path information. To preserve privacy, the Origin header

does not contain the path part of the request’s origin. For ex-

ample, suppose bank.com wants to assert that only requests from

broker.com/accounts/ can have side-effects on bank.com, but re-

quests from any other location from broker.com, such as bro-

ker.com/forum/, may not. By design, the Origin header lacks the

path information necessary for a web application to make this de-

cision; making it impossible for bank.com to distinguish a request

for the (legitimate) accounts page from a CSRF attack inside a ma-

licious post on the forum page.

One workaround could be for broker.com to separate the /forum/

and /accounts/ parts of the web application into multiple subdo-

mains (e.g., accounts.broker.com and forum.broker.com), but sub-

domain configuration may be problematic. Many open-source web

applications (such as forums or blogs in a box) do not support

subdomain creation via scripts, instead forcing the web developer

to manually perform potentially confusing server configuration.

Moreover, subdomain creation may be disallowed or may incur ad-

ditional cost from hosting providers [33]. Finally, if using TLS,

web developers would have to procure additional costly TLS cer-

tificates for subdomains or pay more for a wildcard certificate. Be-

cause of these complications, developers often separate web appli-

cation modules by path rather than by subdomain.

Origin sent as null. If a request originated from an anchor tag

or a window navigation command such as window.open, the Origin

header is sent as null. The rationale is that “hyperlinks are common

ways to jump from one site to another without trust. They should

not be used to initiate state-changing procedures” and “many sites

allow users to post links, so we don’t want to send Origin with

links” [25]. The suggested workaround is to convert all anchor tags

and window navigation calls to a form GET. Such overhauls may

be tough for maintainers of legacy sites, making it difficult for them

to rely on the Origin header for CSRF protection.

Additionally, for business and security reasons, many sites (such

as banking sites) do not allow users to post links. For these sites,

using anchor tags as trusted sources of state-changing requests may

be a valid decision. However, since the Origin header is null for all

requests originating from anchor tags, these sites would be forced

into using forms instead if they wish to leverage the Origin header.

3.2 Client-side Approaches
Some defenses check for CSRF on the client side (browser)

rather than the server side. Client-side solutions first identify “sus-

picious” cross-origin requests and then either block the request out-

right [39] or strip the request of all cookies and HTTP authentica-

tion data [30, 10, 16, 22, 21]. The biggest advantage of client-only

solutions is that they do not require any web site modifications,

relying instead on either heuristics or central policy sources. Un-

fortunately, this makes them prone to false positives which break

legitimate sites and/or false negatives which fail to detect CSRF.

CsFire. CsFire [30, 10] is a browser plug-in that strips cookies

and authentication headers from outgoing HTTP requests that are

deemed unsafe. By default, all cross-origin requests are considered

unsafe, except for requests that pass a fairly strict set of rules to

identify trust relationships between sites (e.g., a.com may make a

request to b.com if b.com redirected to a.com earlier in the same

browsing session). This policy breaks many legitimate sites, so Cs-

Fire maintains a whitelist of exceptions on a central server (main-

tained by the CsFire authors) and also allows users to add excep-

tions manually.

Unfortunately, in our experience, CsFire still results in false pos-

itives and breaks legitimate functionality during normal browsing,

such as logging into Flickr or Yahoo via OpenID. This shows that

such an architecture would need to rely on users and/or CsFire de-

velopers to constantly update the list of whitelisted sites that are

allowed to send authentication data. Moreover, existing sites may

change at any moment and break existing CsFire policies. We be-

lieve maintaining such an exception list for the whole web is close

to impractical, as is relying on users to manually add exceptions.
In addition, CsFire’s policies make a binary decision to either

send or strip all cookies and HTTP authentication headers. This

may cause overly restrictive policies, as cross-origin requests could

harmlessly include cookies that are not used for authentication

(such as user settings). Worse, this may also lead to insecure poli-

cies: if a site needs a non-sensitive cookie in order to function,

a user may be tempted to add a CsFire exception for such a site,

which would allow requests to the site to attach all cookies, includ-

ing sensitive authentication cookies, which could lead to CSRF.

RequestRodeo. RequestRodeo [16] is a client-side proxy, posi-

tioned between the browser and web sites, that stops CSRFs by

stripping authentication data from suspicious requests. Requests

may contain authentication headers only if they are initiated “be-

cause of interaction with a web page (i.e., clicking on a link, sub-

mitting a form or through JavaScript), and if the URLs of the origi-

nating page and the requested page satisfy the same-origin policy.”

To trace request sources, the proxy rewrites “HTML forms, links,

and other means of initiating HTTP requests” with a random URL

token. The token and response URL is then stored by the proxy

for future reference. When the browser makes a request, the proxy

looks up the URL token and compares the destination URL with the

request’s referring URL. If they do not match, the request is con-



sidered suspicious. The proxy also detects intranet cross-domain

requests and validates them with explicit user confirmation.

This approach has several downsides. First, it mandates that all

user traffic must go through a TLS man-in-the-middle proxy. Sec-

ond, many applications use JavaScript and other active content to

dynamically create forms and issue HTTP requests directly from

the client, making rewriting of such requests impossible in a proxy.

Third, rewriting all HTML content may have unpleasant latency

implications. Finally, some cross-domain requests can be legiti-

mate (e.g., for federated login/single-sign-on or for showing users

personalized content when they visit a link); RequestRodeo does

not support these cases.

BEAP. Browser-Enforced Authenticity Protection (BEAP) [21] at-

tempts to infer whether a user intended the browser to issue a par-

ticular request. User intent is determined via a browser extension

that monitors user actions. For example, if the user enters a URL

into the address bar, the request is considered intended. However,

if the user clicks on a link in an e-mail message or from the browser

history list, the request is considered unintended. The browser ex-

tension strips unintended requests of “sensitive” authentication to-

kens, which include (1) all session (non-persistent) cookies sent

over POST requests and (2) HTTP Authorization headers. Persis-

tent cookies are treated as non-sensitive, as are session cookies sent

over GET requests. BEAP authors note that these rules were gen-

erated by analyzing real-world applications. However, this analysis

does not hold today: for some web sites we analyzed, such as Woot

or Google, some sensitive cookies were persistent.

Cross-site Request Forgeries: Exploitation and Prevention. In

their 2008 paper [39], Zeller and Felten identified a variety of high-

profile CSRF vulnerabilities and gave general guidelines for how

to prevent them, recommending tokenization and using POSTs for

state modifying requests. The authors also provided two tools for

CSRF prevention: a plug-in for developers to perform automatic to-

kenization, and a plug-in for browsers to block cross-domain POST

requests (unless the site has an Adobe cross-domain policy that

specifies exceptions).

We believe the auto-tokenization plug-in is useful, but suffers

from the same drawbacks as other tokenization frameworks (Sec-

tion 3.1.1). The client-side solution is both too coarse in how it

handles POST requests and too permissive when it freely passes

any GET requests through, including potentially dangerous GETs

(see examples in Section 3.1.1).

Adobe Cross-Domain Policy. Adobe cross-domain files specify

how Adobe clients (such as Flash Player and Reader) should make

requests across domains. These policies are hosted on remote do-

mains and grant “read access to data, permit a client to include

custom headers in cross-domain requests, and are also used with

sockets to grant permissions for socket-based connections.” [1]

We believe these policies do not provide enough control over am-

bient authority to prevent CSRFs without restricting functionality.

For example, developers cannot specify names of cookies to which

the policies apply or control valid embedding.

3.3 Comparing to Our Approach
In summary, we found that server-side approaches required non-

trivial development effort, failed to protect web applications against

state-modifying GET requests, and were vulnerable to some types

of attacks (e.g., token extraction). Client-side approaches used

heuristics to identify “suspicious” requests and “important” au-

thentication tokens. However, because client-side solutions cannot

know developer intentions, they were prone to either false positives

which break sites or to false negatives which miss attacks due to

being too lenient with allowed requests.

In contrast to these approaches, our solution takes a middle

ground. We let web application developers write policies speci-

fying how browsers should handle data and requests for their sites;

this eliminates guesswork in approaches like CsFire, BEAP, or Re-

questRodeo. We also add browser support for handling policy en-

forcement, avoiding the pitfalls such as forgetting to check a CSRF

token. This hybrid client/server design build on principles from

two recent efforts aimed at securing sites, Content Security Pol-

icy (CSP) [35] and Cross-Origin Resource Sharing (CORS) [37].

Neither CSP nor CORS are designed for mitigating CSRF, instead

aiming at preventing XSS and relaxing the same-origin policy, re-

spectively. Our solution fills this gap.

In concurrent work, the popular Firefox extension NoScript [22]

recently released a module called ABE (Application Boundaries

Enforcer) [23], which provides generic firewall-like protection for

web sites, including an ability to stop CSRF by stripping authen-

tication headers from requests that match policy rules. Policies

may be configured by users or stored on a site in a “rules.abe”

file. Although this general approach is similar to our solution,

there are important differences as well. ABE’s design will cause

the browser to make an extra request for every new domain, even

if that site doesn’t have “rules.abe”. Furthermore, since NoScript

allows “rules.abe” to only be served over HTTPS, web sites must

have an HTTPS server to use ABE for CSRF protection. While

ABE allows stripping authentication data from requests, it cannot

set policies for individual cookies, running into the same limita-

tions as CsFire. Our solution does not have these drawbacks, and

unlike NoScript, it does not require any user involvement and is im-

plemented directly in the browser. Finally, and most importantly,

we not only design a mechanism, but also evaluate the feasibility

of modifying real web sites to use it in Section 6.1; this evaluation

shines light on practicality of not just our solution, but ABE as well.

4. DESIGN
Learning from our analysis of pitfalls in existing defenses, our

anti-CSRF design should be (1) easy for developers (e.g., unlike

checking of anti-CSRF tokens), (2) transparent to users (e.g., un-

like CsFire or NoScript which ask users to define or approve poli-

cies), (3) backwards compatible to not break legitimate sites that

do not opt in to our defense (e.g., unlike CsFire breaking OpenID),

and most importantly, we should (4) address the root cause of

CSRFs, namely ambient authority, to provide more comprehensive

coverage against CSRF than existing solutions.

Recall from Section 2 that fundamentally, CSRFs result when

browsers exercise ambient authority: (1) browsers automatically

attach credentials to HTTP requests and (2) web application devel-

opers treat the presence of those credentials in a request as implicit

authorization for some action. Keeping these root causes in mind,

we make the following key observations.

• While splitting authentication and authorization is a classical

best practice in computer security [19, 36], it is underutilized

on the web. In our experience, most websites use a single to-

ken (such as a session cookie or the HTTP basic authentication

header) for both authentication and authorization. Decoupling

this concept on the web could have significant security benefits.

• The developers of site X are in the best position to determine

which other sites are authorized to cause the user’s browser to

issue HTTP requests that perform state-modifying actions on X.

However, server-side code on site X cannot reliably tell which

other site caused the user’s browser to issue an HTTP request.

• On the other hand, browsers know the full context in which

requests are issued. Specifically, browsers know the full DOM

layout and can infer whether a request was triggered by a user

action, a nested iframe, or a redirection.



In light of these observations, we introduce a new browser

mechanism called Allowed Referrer Lists (ARLs), which restricts a

browser’s ability to send ambient authority credentials with HTTP

requests. Sites wishing to be resilient against CSRF must opt in to

use ARLs. With ARLs, participating sites specify which state (e.g.,

specific cookies) serves authorization purposes. Sites also specify a

whitelist of allowed referrer URLs; browsers are allowed to attach

authorization state to HTTP requests made from these URLs only.

This policy is transmitted to the user’s browser in an HTTP header

upon first visit to a site, before any authorization state is stored.

This approach capitalizes on the fact that browsers know the

browsing context, namely determining which web site principal

issued an HTTP request, while web developers understand site-

specific authorization semantics, namely whether a request-issuing

web site should be authorized. By having developers only specify

policies and letting browsers carry out enforcement, we ease the

enforcement burden on developers. By having only participating

sites specify policies to receive CSRF protection, we leave other

sites’ behavior unchanged, thus providing backward compatibility.

4.1 Identifying and Decoupling
Authentication and Authorization

To use ARL, developers should identify and decouple the cre-

dentials they use for authenticating and authorizing users’ requests.

First, developers must determine which credential is being used

to identify users. Recall from Section 2.1 that developers use var-

ious methods to identify users: HTTP authentication, source IP,

TLS client certificates, and cookies. In many cases we studied, ap-

plications use a single cookie to authenticate users.

Next, developers should create a credential for authorizing user

requests. For example, developers may choose to set a new au-

thorization cookie called authz on the user’s browser. Any HTTP

request not bearing the authorization credential must not be allowed

to induce state-changing behavior (even if the request has the au-

thentication credential). A request bearing only the authorization

credential should be treated as an unauthenticated request.

Some sites can benefit from ARLs without needing to separate

authentication and authorization credentials, whereas others will

require this separation to properly work with ARLs. In Section 6,

we will further discuss these two cases.

4.2 Defining ARL Policies
To define an ARL policy, developers list authorization creden-

tials, which may include specific cookie name(s), HTTP Authenti-

cation, or even the whole request (for source IP or TLS client cert

authentication). If a credential is mentioned in an ARL policy, we

say that the credential has been arled. By default, arling a creden-

tial prevents that credential from ever being attached to any HTTP

request. Developers specify additional rules to relax this restriction

in a least-privilege way. ARLs have two core directives:

• allow-referrers: Developers provide a whitelist of re-

ferrers that can issue authorized requests. A refer-

rer is a URL with optional wildcards. Referrers can

be as generic as https://*.bank.com/* or as specific as

https://bank.com/accounts/modify.php. Wildcards and paths al-

low web sites to be flexible in expressing their trust relation-

ships. For example bank.com may be owned and run by the

same entity as broker.com, but bank.com may only want to re-

ceive authorized requests from https://broker.com/transfer/*.

• referrer-frame-options: Malicious sites could cause a pro-

tected credential to be sent by embedding content (e.g., in an

iframe) from a referrer specified in the ARL policy. We there-

fore allow developers to restrict framing of referrers. Simi-

larly to the HTTP Header Frame Options RFC [29], we allow

arl {

apply-to-cookie = authz,

allow-referrers = https://*.bank.com/*
https://broker.com/finance/*,

referrer-frame-options = SAMEORIGIN

}

Figure 3: ARL policy example. With this policy, bank.com forbids the

browser from sending the authz cookie, except when the request was

generated by https://*.bank.com/* or https://broker.com/finance/*, and

only if the requesting page was framed by a page of the same origin.

arl {

apply-to-http-auth = true,

allow-referrers = https://*.bank.com/*
https://broker.com/finance/*,

referrer-frame-options = SAMEORIGIN

}

Figure 4: Restricting HTTP Authentication. With this policy,

bank.com forbids the browser from sending the HTTP Authentication

header, except when the request was generated by https://*.bank.com/*

or https://broker.com/finance/*, and only if the requesting page was

framed by a page of the same origin.a

three framing options: DENY, SAMEORIGIN, or ALLOW-FROM.

DENY states that the referrer must not be framed when issu-

ing an authorized request. SAMEORIGIN allows the referrer

to make an authorized request while being framed by “itself”

(i.e., by a URL matching the ARL whitelist entry for that re-

ferrer) or by the target of the request. The ALLOW-FROM op-

tion takes additional values in the form of domain URLs such

as https://broker.com/. We allow framing depth of at most one

embedding to prevent attackers from mounting attacks on the

embedder. If this directive is omitted, the default value is DENY.

Using these two directives, developers can generate simple

yet powerful policies. Figure 3 shows a policy that may be

used by bank.com. Here, the cookie authz is arled and

https://*.bank.com/* and https://broker.com/finance/* are listed as

the only referrers. This means that the browser will only attach

the authz cookie to HTTP requests generated by an element from

https://*.bank.com/* or https://broker.com/finance/*. Note that the

allow-referrers directive specifies not only the domain, but also the

scheme (HTTPS in this case) from which the requesting element

must have been loaded. This differs from the Secure attribute of a

cookie, which only specifies how to send the cookie itself. By in-

cluding the HTTPS scheme, a web application developer specifies

that protected credentials are never sent by an element not loaded

over TLS. This control is not possible with any of the techniques

we studied. This policy also states that the authz cookie may be

attached only if the referrer was either not framed or framed only

by a page from SAMEORIGIN (either target bank.com or referrer

broker.com/finance). Note that unlike origin-based framing rules in

the X-Frame-Options HTTP header, our rules will check for the full

broker.com/finance path, e.g., to avoid potentially malicious fram-

ing from broker.com/forum that bank.com did not intend.

As another example, Figure 4 shows how an ARL policy can be

applied to HTTP basic authentication credentials instead of cookies

(though we suggest that developers use cookies for authorization).

Finally, Figure 5 shows how ARLs can be used to disallow any re-

quests to a particular destination unless the request is being made

by a particular referrer (specified via the apply-to-requests-to di-

rective). This directive can protect sites which rely on source IP or

TLS client certificates for authorization.

It is important to reiterate that ARLs should be applied to au-

thorization, not authentication credentials. That is, from a security

point of view, it is always acceptable for a web site to know from

which user’s browser an HTTP request came. However, it is not



arl {

apply-to-requests-to = https://accounts.bank.com/modify,

allow-referrers = https://accounts.bank.com/*,

referrer-frame-options = DENY

}

Figure 5: Disallowing requests. Here, bank.com forbids any requests

(with or without credentials) to https://accounts.bank.com/modify, ex-

cept when the request was generated by https://accounts.bank.com/*,

and only if the requesting page was not framed.

always acceptable for sites to take actions based on those requests.

Application: Defeating Login and Logout CSRFs. Barth, Jack-

son, and Mitchell described a Login CSRF attack whereby an at-

tacker “forges a login request to an honest site using the attacker’s

user name and password at that site” [5]. A successful attack causes

the user to be logged into the site with the attacker’s credentials, al-

lowing the attacker to “snoop” on the user.

A Logout CSRF attack is similar in that it allows attackers to

disrupt the user’s session on legitimate sites. Many sites implement

logout by having users visit a URL (e.g., site.com/Logout). For

many sites, this URL is vulnerable to a CSRF attack: malicious

sites can embed an iframe pointing to a site’s logout URL and cause

any visitor of the malicious site to be logged out of the legitimate

site. Google, for example, is vulnerable to this attack.

ARLs can be used to protect web applications against both lo-

gin and logout CSRF attacks. To protect against login CSRF, a

web site may set an arled dummy authorization credential when

displaying the login form. Then, the site should verify that the

dummy authorization credential is returned along with the user’s

other login credentials before setting the real authorization and au-

thentication credentials. Similarly, logout CSRF can be stopped

by simply checking that the (real) arled authorization credential is

present before signing the user out.

4.3 Enforcing ARL Policies
Once the browser obtains an ARL policy for a site, the browser

must examine each outgoing HTTP request’s context to check

whether any of a site’s current ARL policies apply, and if so,

whether or not to attach arled credentials to the request.

Referrers. To enforce the “allow-referrers” directive, we lever-

age the fact that browsers already determine each request’s referrer.

Broadly speaking, a referrer is the URL of the item which led to the

generation of a request. For example, if a user clicks on a link, the

referrer of the generated request is the URL of the page on which

the link was shown. The referrer of an image request is the URL of

the page in which that image was embedded.

Browsers also handle complex cases of referrer determination.

For the redirect chain a.com ⇒ b.com ⇒ c.com, modern

browsers (IE, Chrome, Firefox, and Safari) will choose a.com as

the referrer if the redirection from b.com ⇒ c.com was made via

the HTTP Location header and will choose b.com as the referrer

if the redirection from b.com ⇒ c.com was made by assigning

window.location in JavaScript. This is not arbitrary. If the redirect

is caused by the HTTP header, then none of the subsequent page

content is interpreted by the browser. However, a JavaScript page

redirect can occur at any point in time after an arbitrary amount of

interaction with the user. Further discussion of this issue is beyond

the scope of this paper, but this issue shows that browsers already

take great care to identify the source of every request so that they

can enforce the same-origin policy — the foundation of many web

security properties. We therefore use the default definition of refer-

rer. If a credential is arled, then the request’s referrer must match

one of the “allowed-referrers”. Otherwise, the credential will not

be sent with the request.

Frame-options. To enforce the “referrer-frame-options” directive,

we are helped by the fact that browsers maintain the page embed-

ding hierarchy (e.g., to enforce the X-FRAME-OPTIONS header).

Browsers record complicated cases with nested and dynamically

created iframes. We simply consult this internal hierarchy when

enforcing “referrer-frame-options”.

If a credential (e.g., cookie) is arled, then the embedding hierar-

chy of the referrer must match the “referrer-frame-options” policy

as defined above. Our mechanism extends frame-checking to also

consider popup windows to prevent attackers from causing CSRFs

by opening victim pages in popups.

Mixed content sites. Some web sites mix HTTP and HTTPS con-

tent when presenting web pages to users. For example, a site may

choose to serve images over HTTP to increase performance, while

all JavaScript and HTML are served over HTTPS. This practice

may introduce certain security vulnerabilities. For example, since

network attackers can manipulate content sent over HTTP, they can

modify “secure” cookies. That is, although cookies bearing the “se-

cure” attribute will only ever be sent over HTTPS, they can be set

or overwritten via a Set-cookie header over HTTP [8].

To avoid these vulnerabilities, we introduce two rules for

browsers implementing ARLs:

• If an ARL policy is received over HTTP, it may only overwrite

an old policy if the old policy was also received over HTTP.

• If an ARL policy is received over HTTPS, it may overwrite any

old policy.

These rules prevent ARL hijacking by network attackers who are

able to insert an ARL header into an HTTP response.

Requests with no referrer. In several situations, a request may

completely lack a referrer. Examples of such events are when users

type URLs into the browser location bar, click on a bookmark, or

follow a link from an e-mail. In these cases, any arled credential

should not be sent, while all the other state should be sent. Note

that this means that web sites will not initiate any state changing

behavior as a result of this request, but can still show personalized

content to the user (since the authentication credentials were sent).

5. IMPLEMENTATION
The implementation and deployment of ARLs involves several

steps. First, web applications need to be modified to implement

ARL policies. This includes designing a policy, potentially sep-

arating authentication and authorization credentials, and then in-

serting the policy into all relevant HTTP responses. Second, the

user’s browser needs to be modified to understand, store, and en-

force ARL policies for arled credentials.

Modifications to web applications are specific to each applica-

tion’s own logic and framework. We explore how this is done with

real-world applications in Section 6.1. In this section, we focus

on options for delivering policies and modifications that browsers

need to support ARLs.

5.1 Policy Delivery
The simplest delivery option, and one used in our implementa-

tion, is to piggyback ARL policies onto existing cookie definitions.

Today, the Set-Cookie header allows cookies to specify constraints

through attributes such as HttpOnly, Secure, Domain, and Path. We

added a new “arl” attribute (bearing an ARL policy) to cookies, al-

lowing each cookie to specify its own ARL policy. Unfortunately,

this delivery method makes it difficult to address HTTP authentica-

tion and IP-based ambient authority.

An alternate ARL policy delivery mechanism is to integrate

ARLs as a new directive for Content Security Policy (CSP) [35],

which is specified through its own HTTP header. CSP already



Figure 6: ARL Proxy rewrites HTTP replies to contain ARL policies.

specifies a number of rules regulating content interaction on web

applications, primarily for mitigating XSS and data injection [35].

Although we did not yet implement this approach, we recommend

it over using cookie attributes due to added flexibility, expressive-

ness, and usability. For example, if a web application used multiple

authorization tokens (e.g., combining HTTP Authentication head-

ers with cookies or using multiple authorization cookies), a devel-

oper would have to specify multiple (potentially duplicate) policies

with the first approach but not with a centralized, HTTP-header-

based policy. As well, HTTP headers can transmit longer ARL

policies than cookies, which are typically limited to 4 kilobytes.

5.2 Browser Modification
To validate the ARL design, we implemented it in the Mozilla

Firefox 3.6 browser. Although the 3.6 version of Firefox is slightly

dated, it was the most stable version when this project began in

2011. We believe that our modifications and implications of our

implementation generalize to more recent versions of Firefox and

other browsers.

Rather than create a browser extension or plug-in (as done by

CsFire or NoScript ABE), we decided to directly modify Firefox.

First, we wanted to have direct access to internal representations of

cookies, referrer information and frame embedding hierarchy. Sec-

ond, we wanted to validate the feasibility of adding native browser

support for ARLs.

For our proof-of-concept, we used attribute-based policy deliv-

ery described above. We modified Firefox in three key aspects:

• Parsing. We modified the cookie parsing code for HTTP re-

sponses to accept a new cookie attribute “arl” and parse the

contents into an ARL policy.

• Storage. To store and retrieve all of the parsed ARL poli-

cies, we modified Firefox’s cookie manager, cookie database

(sqlite), and all of the related structures and methods to al-

low setting and retrieving a new “ARLPolicy” data structure

for each cookie.

• Enforcement. Finally, we enforce ARL policies by adding

code that checks each cookie’s policy before attaching it to an

HTTP request. Firefox already considers many factors before

attaching cookies to requests, such as verifying that requests ad-

here to the same-origin policy or that the request is going over

TLS (if the cookie’s Secure attribute is set). We appended our

ARL enforcement logic (described in Section 4.3) to this code.

In total, our modifications consisted of approximately 700 lines of

C++ code spread across 13 files.

6. EVALUATION
We conducted experiments to answer several questions about the

effectiveness and feasibility of ARLs, including: (1) how well do

ARLs guard against CSRF attacks, (2) how difficult is it to write

ARL policies for real sites, (3) how much developer effort is re-

quired to deploy ARLs, (4) does deploying ARLs break existing

web applications, and (5) do ARLs have a performance impact?

To answer these questions, we first studied four open-source web

applications with known CSRF vulnerabilities, implemented ARLs

in the applications’ code bases, and analyzed how well ARLs pro-

tected them against CSRF attacks. Second, we used the Fiddler

SDK [20] to develop an ARL Setting Proxy that allowed us to ex-

periment with ARL policies on arbitrary web sites without modify-

ing their code. This proxy, implemented in 120 lines of JavaScript

and illustrated in Figure 6, allowed us to study how ARLs interact

with large, complex, on-line web applications such as Google. We

also evaluated ARL performance using browser benchmarks.

6.1 Studying Applications with Source
We monitored the public security mailing list “full disclosure”

during the summer of 2011 for CSRF reports. Using those reports,

we chose four projects for which source code was available and for

which the CSRF attacks were reproducible. The web applications

we studied are summarized in Table 1.

For each application, we first performed an in-depth analysis to

understand the intended authorization structure and then developed

ARL policies to enforce that structure. We confirmed that without

modifications, the applications were indeed vulnerable to CSRF at-

tacks. Next, we deployed the applications with ARL policies and

tested whether the attacks were now thwarted. Finally, we tested

each application to check that ARL deployment did not inhibit any

functionality. We report on an in-depth case study of one of the

applications below. We found that ARL polices for the other three

applications had a similar level of complexity, and that ARLs were

effective at protecting these applications against CSRF attacks.

6.1.1 Case Study: UseBB

UseBB is an open-source web application for lightweight forum

management. The project’s web site advertises that rather than

providing as many features as possible, UseBB strives to provide

an easy and usable forum with only the most necessary features.

UseBB is written in PHP with a MySQL database backend.

Initial vulnerability report and analysis. In the summer of 2011,

a submission to the security mailing list full-disclosure reported

“Multiple CSRF (Cross-Site Request Forgery) in UseBB”. This re-

port was for version 1.011 of UseBB, which we downloaded and

analyzed.

This version of UseBB consisted of 25k lines of code spread over

83 source files. After studying UseBB, we understood that the ap-

plication’s state management worked as follows: when a user logs

into the application, UseBB sets a single cookie, called usebb_sid,

to authenticate further HTTP requests as coming from that user.

Building a corpus of CSRF attacks. The bug report to full-

disclosure mentioned multiple vulnerabilities, but only identified

one page as having a vulnerability. After studying the code, we dis-

covered that UseBB had no CSRF protection on any of its pages.

This resulted in any request bearing the usebb_sid cookie to be au-

thenticated and authorized to perform arbitrary actions. For exam-

ple, by exploiting this vulnerability, attackers may have been able

to perform a variety of attacks including changing user e-mail ad-

dresses, name, or adding illegitimate administrator accounts. We

implemented these attacks and formed a corpus of CSRF attacks.

Developing an ARL Policy. Next, we developed an ARL policy

and analyzed its effectiveness. First, so that we could study an ARL

policy in action, we deployed an instance of UseBB on an internal

network at the URL: http://usebb.com. Next, we verified

that all CSRF attacks from our corpus worked as expected. Then,

we developed an ARL policy and deployed it via the ARL Setting

Proxy. The policy we developed is:

arl {

apply-to-cookie = usebb_sid,

allow-referrers = http://usebb.com/,

referrer-frame-options = SAMEORIGIN

}

Next, we tested UseBB (now protected by ARLs) against our cor-



Application Version # of source files Lines of Code Type of Application

Selectapix 1.4.1 39 6k Image gallery

UseBB 1.011 83 21k Forum

PHPDug 2.0.0 133 25k URL/link sharing app (similar to digg.com)

PoMMo PR16.1 234 32k Mailing list manager

Table 1: Summary of web applications we studied. All applications were written in PHP and used a MySQL backend database.

pus of CSRF attacks and found the attacks to be no longer func-

tional. Our ARL policy fully protected this deployed application in-

stance against any CSRF attacks that leverage the usebb_id cookie.

Deploying an ARL Policy in UseBB. The next step was to deploy

the ARL policy within the UseBB application itself (rather than via

the proxy). We explored several ways in which this may be done.

For example, one approach we used to deploy ARLs in UseBB was

to add one line to the Apache server configuration file:

Header add X-ARL-Policy "arl{ \

apply-to-cookie = usebb_sid, allow-referrers = self, \

referrer-frame-options = SAMEORIGIN }"

To use this method, the web application developer must have ac-

cess to the global Apache configuration file, which may be unavail-

able on some shared hosting providers. In that case, the developer

could also deploy ARLs by modifying the .htaccess file (i.e., the lo-

cal web server configuration file). We verified that this deployment

strategy worked as well. The additions to .htaccess were:

<IfModule mod_headers.c>

Header set X-ARL-POLICY "arl{ \

apply-to-cookie = usebb_sid, allow-referrers = self, \

referrer-frame-options = SAMEORIGIN }"

</IfModule>

A similar modification is possible for local configuration files

for IIS web servers. We verified that these additions were possible,

but did not deploy UseBB via IIS. There may, however, be cases

where developers are not allowed to create or modify even local

web server configuration files. In such cases, the developer would

have to modify the application source directly to implement ARLs.

Since UseBB is written in PHP, we accomplished this by adding

the following line of code to files which produce HTML code:

header(’X-ARL-Policy: arl{ \

apply-to-cookie = usebb_sid, allow-referrers = self, \

referrer-frame-options = SAMEORIGIN }’);

We implemented all of the aforementioned approaches and veri-

fied that each of them secured UseBB against our corpus of CSRF

attacks.

Comparing ARLs to Traditional Patch. The official repository

of UseBB was later updated to fix the CSRF vulnerabilities in ver-

sion 1.0.12 of the code. The developers protected UseBB against

CSRFs by writing a custom CSRF token framework. By manually

inspecting changes introduced in version 1.0.12, we counted ap-

proximately 190 line changes that were related to the new CSRF

defense. We tested version 1.0.12 against our corpus of CSRF at-

tacks and found that it did prevent them. We believe our solution

to be better than the traditional patch in several ways. First, as we

saw, implementing ARLs requires many fewer code modifications.

Second, while ARLs would protect against any new CSRF attacks

that leverage the usebb_id cookie, the patch would not — addi-

tional code would have to be written for any new pages added to

UseBB.

Backwards Compatibility. Though ARLs clearly protected

UseBB against CSRF attacks, we wanted to investigate whether

the deployment of ARLs impeded any UseBB functionality. Since

the UseBB source code did not include any unit (or other type

of) tests, we performed all functionality testing manually. Even

though UseBB did not have separate authentication and authoriza-

tion credentials, we found that all existing legitimate functionality

was maintained.

6.2 Studying Large Sites without Source
Next, we studied the feasibility of ARLs in real-world, propri-

etary web sites. Modern web applications, such as Google’s Gmail,

are incredibly complex. The server source code is proprietary, and

the code that is shipped to the browser is often obfuscated or has

been run through an optimizer that makes the code difficult to read.

Furthermore, to optimize user experience, such sites set dozens of

cookies on the client, some of which represent preferences, while

others are responsible for authenticating the user’s requests.

We chose to study three web applications which we believe to

be quite complex and which, in our opinion, serve as good repre-

sentatives of state-of-the-art web applications: Gmail, Facebook,

and Woot (a flash deals e-commerce site owned by Amazon.com).

For each application, we first identified the “important” application

cookies. Next, we observed how those cookies were sent during

normal operation. Finally, we created ARL policies for those cook-

ies, deployed them using our ARL Setting Proxy, and examined

whether normal functionality was maintained.

Selecting Important Cookies. Modern, large web applications use

a large number of cookies. For example, Gmail and Facebook set

around 40 cookies, while Woot sets about 201. Many of these cook-

ies have to do with preferences, screen resolution, locale, and other

application state. Some of these cookies, however, deal with au-

thentication and (potentially) authorization — these are the cookies

that need to be protected by ARLs.

The majority of cookies have cryptic names, making it difficult to

infer their intended function. We identified authentication cookies

by experimentally removing cookies set in the browser until the

web site refused to respond to requests or performed a signout. This

cookie elimination process was done through manual analysis by

individually removing each cookie and testing the result.

Using this strategy, we were able to narrow the set of all cookies

down to just a few important cookies for each application. For

Gmail, we found the important cookies to be LSID, SID, and

GX; for Facebook the important cookies were xs and c_user;

for Woot, the important cookies were authentication and

verification.

Developing ARL Policies. Next, we needed to determine what the

legitimate referrers were for sending these authentication cookies.

We accomplished this by performing normal actions (such as send-

ing and checking e-mail on Gmail, viewing photos and friends on

Facebook, and browsing items on Woot) and observing the network

traffic through the Fiddler web proxy.

Using these traces, we then developed an ARL policy for each

site. The policies were less complex than we had assumed they

would be. For example, the policy for Gmail was:

arl {

apply-to-cookie = SID LSID GX,

allow-referrers = https://accounts.google.com

https://mail.google.com,

referrer-frame-options = DENY

}

1The number of cookies varied based on user actions.



Policies for Facebook and Woot were of similar complexity; that

is, they mentioned the important cookies and only a handful of re-

ferrers. Furthermore, we found that these policies did not inhibit

regular in-app functionality.

6.2.1 Splitting Authentication and Authorization

While the simple ARL policies above can support many inter-

actions with Google, Facebook, and Woot, we discovered some

desirable actions that these policies cannot support with the sites’

existing cookie structure. For example, these policies are not com-

patible with the use of Google as a federated login provider or the

use of Facebook’s Like buttons on other sites2.

Recall from Section 4.1 that web sites should clearly separate au-

thentication credentials from authorization credentials. After doing

so, it is only necessary to arl the authorization credential. The au-

thentication credential can be sent about as before. We found that

the limitations above are all due to the fact that none of our applica-

tions separate authentication and authorization in their cookies, and

making this modification re-enables the unsupported functionality.

Embedded Widgets. Facebook’s Like Button and Google’s +1

Button are just two examples of a large class of “embedded wid-

gets” that allow users to like, pin, tweet, and otherwise share a web

page with their social graph. A web page that wants to enable a

specific widget on its page includes HTML or JavaScript, usually

provided by the social network, which renders an iframe sourc-

ing the specific social network and displays the social button. The

iframe’s content is loaded from the social network; this has two

key features. First, it prevents the host page from programmati-

cally clicking on the widget. Second, it gives the widget access to

the user’s cookies from that social network, so that when the user

clicks on the widget, the user’s state in the social network can be

properly affected.

When a user clicks on such a widget, the browser infers the re-

ferrer of the consequent request to be the social network and not the

host page. This is because the content inside the iframe has already

been loaded from the social network. Consequently, one would ex-

pect ARLs to work out of the box with embedded widgets. Indeed,

this is the case with Google’s +1 button. However, ARLs do not

currently work with Facebook’s Like button because when send-

ing the HTTP request for the iframe’s initial contents, the browser

determines that the referrer is the host page, preventing any arled

cookies from being sent. If Facebook used the authentication/au-

thorization splitting paradigm as above, then only the authoriza-

tion cookie would not be sent on the initial request, and the iframe

could still be loaded with authenticated content (e.g., the number

of friends that have liked the host page), allowing the like button to

work.

Exploring Federated Login. Federated identity management is

the mechanism whereby web applications can rely on other web

sites, such as Facebook Connect or OpenID, to authenticate users.

One of our selected test apps, Woot, supports federated login from

Google. That is, a user can click on a button on the Woot login

page, which will redirect the user to Google, which will verify the

user’s authentication credentials and log them into Woot via an-

other redirect. Unfortunately, since Woot did not separate authen-

tication and authorization credentials, the only cookie we can arl

is the single authentication cookie, which would then be stripped

from redirection requests between the two parties. By splitting

authentication and authorization credentials into two cookies (as

above) and only arling the authorization credentials, federated lo-

gin on Woot could be supported.

2This was an artifact of Facebook’s implementation; ARLs sup-
ported Google’s +1 button.

6.3 Browser Performance
To make sure ARLs are feasible for browsers to implement, we

checked performance overhead of ARLs. More specifically, we set

up a 4K benchmarking page that sets a cookie and, upon loading,

sends the cookie back to the server using AJAX. We measured the

latency of this HTTP response-request roundtrip with unmodified

Firefox browser and with ARL-enabled Firefox and an ARL policy

for the cookie. We evaluated two ARL policies: a 1-referrer policy,

and a 30-referrer policy where only the last referrer was valid. We

averaged our results over 100 runs. Our client ran on a Windows

7 laptop with 2.20GHz CPU and 2GB RAM, and our server ran

on a Macbook Pro laptop with a 2.66GHz CPU with 8GB RAM,

connected with a 100MBps network.

We found that the latency difference between unmodified and

ARL-enabled browsers was negligible for requests with the small

(single referrer) ARL policy. For the longer 30-referrer ARL pol-

icy, the median latency difference increased to 3ms (2%), which

is still very acceptable. We expect most sites to have shorter ARL

policies, and we note that our implementation of ARL parsing and

matching was not optimized for performance.

7. DISCUSSION

Privacy. Adversaries may try to learn the referrer of a request by

creating many cookies with different ARL policies and then see-

ing which ones are sent back. However, ARLs introduce no ad-

ditional privacy leaks compared to the Referer header, which is

already freely sent by browsers. Some organizations may need to

conceal the referrer to prevent revealing secret internal URLs. To

do this, they install proxies that remove the Referer header [17].

To prevent any additional referrer leaks from ARLs, these proxies

(or ARL-enabled browsers) can strip all cookies and HTTP authen-

tication headers from requests generated by following a link from

an intranet site to an internet site. This should not negatively im-

pact any functionality, since links from the intranet to outside sites

should not be state-modifying.

Limitations. ARLs help protect against many types of CSRF at-

tacks, but they are not a panacea. For example, ARLs are unable

to protect against “same origin and path” attacks. If a page accepts

legitimate requests from itself and somehow an attacker is able to

forge attacks from that page, then ARLs may be ineffective.

Another limitation involves deployment. Until ARLs are sup-

ported in most browsers, web sites must use older CSRF defenses

alongside ARLs. This is also true for any browser-based security

feature. For example, many sites still have to use JavaScript-based

framebusting because some older browsers still do not support the

X-FRAME-OPTIONS HTTP header.

8. CONCLUSION
CSRF attacks are still a large threat on the web; 2012 was one of

the most CSRF-active years on record [26]. In this paper, we give a

background of CSRF attacks, highlighting their fundamental cause

— ambient authority. Next, we study existing CSRF defenses and

show how they stop short of a complete solution. We then present

ARLs, a browser/server solution that removes ambient authority for

participating web sites that want to be resilient to CSRF attacks. We

implement our design in Firefox and evaluate it against a variety of

real-world CSRF attacks on real web sites. We believe that ARLs

are a robust, efficient, and fundamentally correct way to mitigate

CSRF attacks.
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